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1. Introduction.

This paper is in some ways a continuation of III and uses the same
notation as far as possible. It is, however, completely self-contained.
Throughout this paper let

f1(0)7 f2(0)’ £er fn(e)r J

be a sequence of functions with positive monotonely non-decreasing
continuous derivatives all defined in the range!)

0<6<1
We shall denote by {z} the fractional part of . For 0 < a <8 <1
we define Fy (a, f:0) to be the number of n << N such that
(1) a < {/(0)} <8B.
Further we put
By (a, p:0)= Fy(a, f:0)— N (f—a)

so that Ry (a, B : 0) is the excess of the number of solutions of (1) over
the number to be expected at random.
Finally we put

Ry (0) = Max |Ry (a, §:0)]

so that Ry ()= ND(N) in KoksMA’s notation.

In IIT of this series I proved, and Erpos-Koksma [1] proved it
independently and practically simultaneously by a different method,
that if f,,(6)—f,(8) is monotonic for all m, » and if

(2) | fu (B)—F (0)| > K > 0
for some K and all m, n 7 m, 6 then for almost all §
(3) %N(B) =0 (N’/t log(‘/z)+e N)

1) The extension of the results proved to a more general interval a < 6 < b
instead of 0 < 6 < 1 is trivial.
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In this paper I show that the estimate (3) can be improved if the
derivatives f,(f) increase fast enough.

We denote by 4, A4;, A, ... positive absolute constants and by 4
an absolute positive constant, not necessarily the same in all contexts.

Theorem. Suppose there is a positive function @(n) of the positive
integer variable n such that

(i) fu(0) = e f,4(0) , f1(0) > 1
for all 6 and n > 1.
(i) lognloglogn > ¢(n) >c¢c> 0
when n is large enough, where ¢ is some constant independent of n.
(ili) ¢(n) and log n log log n ¢—(n)

are monotonic non-decreasing when n s large enough.
Then for almost all 0 there is an No= Ny(0) such that

(4) Ra(0) < A4y N':log'* N log log N ¢~ (N) (N > N,)

where A, is some absolute constant.
We note the two extreme cases.

@(n) = log nlog log n. Then (4) becomes NRy(0) < 4,N':loglog’ N.

This is best possible apart from the constant A4, Indeed it is an
immediate consequence of the statistical ‘“law of the iterated logarithm”
when p, is any strictly increasing sequence of integers and f,(0) = 20
that

R (5)

lim. sup. ~,——"=—
v PN

i By (0,Y5:0)] _ 9,
2log log': N ~

N'l:loglog': N —

> lim. sup.
N

for almost all 0, however quickly p, tends to infinity. [ef. KHINTCHINE [3]].

@(n) = ¢ = constant. This is the ‘“lacunary” case and then (4) be-

comes R (0) < A,c ' N':log": N log log N. This estimate is stronger
than one obtained by Erpos-Koksma [2], who, moreover, required a
condition on f;(0).

2. Notation.

We use the following symbols: —

[x]:  the greatest integer not greater than .
||z||: the difference between x and the nearest integer, i.e.
llz||= Min |n—z|.
n=0, £1, +£2,...

{x}: the fractional part of z. Thus z= [z]+ {z}.
Define a function r (a, 8 : z) of the variables a, 8, z by

r(a p:z)=1—{f—a} if {g—a} < {f—a}

= — {f—a} otherwise.
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It is easily verified that

(5) RN(a’ ﬂ : 0) :'néNT (o, B: fn(o))

when 0 < a < <1 (i.e. whenever the symbol Ry(a, f:0) has been
defined). We shall use the equation (5) to define Ey(a, f:0) for other
values 1) of a, f. More generally we define

NXRN,(a, ﬂ : 0) == . 2 "r (a’ ﬂ : .f’ll.(e))

1<nS N,

We note also
Lemma 1. For each integer n > 1 the function r=r (a, f : x) satisfies
m=U,r+ Vyy
where y = ||f—al| and U,, V, are independent of x. Further
Ul <1, V<1, V,=o.

For r (a, B : ), when q, § are fixed, takes only the values 1 —y and
— . The identity then follows with

Up=1—p)"— (=)
Vn = (1 - 7’) Un—l
and the rest is trivial.

3. An estimation lemma.
Our proof depends essentially on the following lemma:—

Lemma 2. Suppose g,,...,9, are any l of the functions f,, f,, . ..
(I any integer). Write r (x) for r(a, f:x) where y=||f—al| and a, p
are any numbers. Then

|

O

7 (91(0)) 7 (92(0)) - . . 7 (9,(6)) dB)|

1
— 1D+ tg () )
coplizly o (BTt iy :
<ot A0 o
0
The case I= 2 is practically the special case hk,(x)= h,(z)=r (2),
@n=@,=y of lemma 2 in paper II. The proof for general ! runs
similarly.
Write
r*(x):_(l;r(é)dzf
so that

1
r*(1)= [ r(x) de = 0, |r¥(x)| < y.
0
1) This extension of the meaning of Ry (a, :60) does not affect the definition
of Ry (6) as
Ey(a,B:0)= Ex({a}, {B}:0) = — Bx({B}, {a}: 0)

and at least one of the last two expressions has a meaning in the original sense.
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We first show that if ¢g(f) is one of the g,-(O)
(6) | f7 )) dO|

whenever 0 << a < b < 1. Indeed

b
; _ [ rgon _ [ g’ b 1
frgona=] ago)=[Z00) —F rgond (;1,)
and hence
b - 1 i D
| rgon a0l < 7 Gon)| <7
by the monotonicity of ¢'(0).

Now let 49 (i=1, 2,..., k;) be the set of values of 0 for which
either {g;(0)}=a or {g(0)}=p (G=1,..., 1 —1) ie. the set of points
of discontinuity of r (g;(0)). Further let u,...,u, be the numbers
0,1, (j=1,..., I —1) arranged in order of magnitude. Then the

product
r (9(0) 7 (92(0)) - - - 7 (91— (0))

is constant and numerically less than 1 in each interval u, <0 << p, ;.
Hence

+

g (b)

L@ r@o) 0] <5 T o) o] <25 s by )
(7) S” N
5 211 { 1
<‘7’(y;<0)7LZ 2, g, "

=% i= ag
But
l(ii) A&j)
| gimdo=] dg,(0)=13<i<k)
1212 gjj{ijl-__
and hence
\ o g Gt g Lg0)
1 C S ERAQ g
. 9T = 7 (o 40 < Y do <2 [ B,
= .239,“-2-") 2: J(.) 7,00 "< 2 J” 0" <?) gw
= = A L= 20

i—2 2

The lemma follows on substituting (8) in (7).
We note also the?!)

Corollary. Suppose ¢4, ..., gy are any M of the functions fy, fa, - . .
where M > 1
Then

i< ja<. <y

g > (_flr(g,-l)r(g;:)...T(,(],-l)dol
(9)

1

< s (21— 5 1 9 -2 9110) /

(\2)/( I1—1) ) ,j(o)-}—..gy J(Q}(o)dos.
J:l i< <M 0

1) We suppress the argument 6 except when its absence might cause ambiguity.
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This follows directly by summation. We note that the right hand side
of (9) is an increasing function of ! (if ¢,, ..., g, remain fixed).
4. The principal lemmas. The kernel of the proof lies in the next

two lemmas.

Lemma 3. Let a, § be any two numbers and let y=||f—al|. Write
r(x) for r(a, f: x). Suppose that g,, . .., gy are any M of the functions
f. and that

My=M||f—a|| >s

where s 1s a positive integer. Put

and suppose

M 1

& (say) = (45—1) 3 75

~

Then

Ir“ (0)do < 2. ZVC.

The proof depends on setting up an identity of the type

(10) (O =Do+ 2 D 3 r@:)r @)1 ()
= h<... 1
by expanding and applying lemma 1, where Dy, D,, ..., D,, are indep-
endent of 0 and satisfy certain inequalities. The lemma will follow
from the corollary to lemma 2, on integration.
In the first place we have an identity of the type

0= 3 Bla...,a) 3 @) ..r g,)

Qay,...,! ay
where
(i) the first sum is over all sets of positive integers =, a,, . . . , a, with
S a,=2
v=1
(ii) the numbers B(a,, ..., a,) are non-negative integers and
(11) > Bag...,a,) < (14+1...4 1)< (28)
n e .
G1r-1ilp 2 s summands

Further, B(a,,..., a,) is unchanged by permutation of a,,...,a,.
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Substituting from lemma 1, we obtain 1)

(12) r‘_’,s(e) = lz B(bh '“;bli c17 "':cm) byt Ubl V"x chj Z iymr(gh) ".r(gjl)’
. m i< ...<idy
biacos by Craeens €y khi<..<kp

(Lil..... jl .k,,..,,]\'m );‘=

where I, m, b,...,b, ¢, ...,c, are any set of numbers such that
Z b4+ 2 ¢.=28; b,>0,¢,>0;1,m=>0.
A

Since V, =0, we may assume that

c,.=2 (u=1,...,m)

[l
and hence

m<s; m<s—1 ifl>0.

We now deduce the identity (10) where D,, ..., D,, are independent
of 0 (but may depend on M,y as well as s) and satisfy the inequalities

|D,| < 3’- (My)* 5 |Dy| < e :—))—(M )= (1> 1).
Indeed if D, is the sum of the terms in (12) independent of the
r’s, we have

IDOIZ! Z B(Cl"-'xcm) V(',"' V(‘m E ,yml
m h<..< h‘,,L<AI
Claenslpy
My :
< ’ S Bty ...,¢,) (",f{/)"n"i since |V, | <1,
"'l--m Cm
— (‘11}‘)"4 : —
<| > B(cl,...,c,,,)[—sl since m < s, My > s
r,...'f‘pm
< By 11
< " (My)* by (11).
Similarly the coefﬁment of a termr(g;)... r(g;,) is
D= > B(by...;bycp,...5¢) Uy ... UV Ve > ym
m I.',<...<l‘m<.’tl
bt (revshvedu) o

which clearly depends only on ! (and M, y, s) and not on the individual
numbers j;, ..., j,. Further, almost as for D,

My)m
ID1,<\ z B(bla'--:bl,cla'-"cm)(”:/)
I"-"""‘l
[
Pe —l .
< | Z B(ay, ..., a‘")l((lli—/);)! since My >s, m <s—1
oty
(28)” —1
< 1) (My)s1,

1) The symbol (x, ¥5 ..., t)+ means that the numbers 2, y, ..., t are unequal
in pairs.
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Now integrate (10) and we obtain

D] 2 23 1

<CEMyy+ 20, S| S [r(g)r(g) O]

) I=1 j<..<j; 0

(23)23 s (28 23
J (M'}’) s—1y!

since, by the corollary to lemma 2, each of the terms of the outer

summation is not greater than 2&. Since © <M by hypothesis, this

jr“ 0)do <

(My)—1.25.298

proves the lemma.
Lemma 4. Suppose N > 100 and suppose there is a positive integer

> 4 such that
S M 1 73_0 a+ LT 1
(13) el (48_1)9=1 _fanh(o) + 2 (‘)f a+:l(o)
: <
< N, M > N'. Then there is

for all positive integers a, M with a-+ M

an absolute constant A, such that
Max Ry (0) < A, s’ N'slog?ls N

n<N

except, possibly, in a set E of 6 of measure
|E| < 4log—* N,

(14)

where p is any positive number
Choose U, V integers such that
22V+‘.’. < 8—1 N < 221’ +4‘

212U < sN < 92U +2
We shall show first that there is a set E for which (14) holds and
As'l: Nl log”/" N

(15) Max |R,v (0,v277:0)| <
u=0.1....,[l\';,’_ ]
2V —1

v=0,1,...

except, possibly, when 0 € E.
Let a,y, b, z be any four integers with
)2 N

y=>U ;0<a2v< (a+1
0<z<V ;0<b2*<(b+1)2*<1.
— b4+ 1277:0)

= aZV‘R(a+1) pd (b

Then
I‘(G) =TYay:b.z (0)

= Z r(fa o¥+j
i=1
where r(z)=r(b 2% b+ 1277:x) satisfies the conditions of lemma 3

by (13), and so

(2s)22+2 98(—2)
7 .

1
foro <2 2
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Hence
[Vayin: (0)] < As'z-logls N - N'h 2Mitv—=
except, possibility, in a set £,,.,. of 0 of measure
| Buyis] < (log Ny—2r . N2 25202,
We shall take for the E of the theorem

E: U Eu.y:h,:'
Then certainly

|E

<3 | Bogie] < (log N)=2r (S N2 20i2) (5 a=lrl),

ay b,z
Now for any given value of z there are 2% values of b and hence
(*5)-

bz - =52 "2V L2 (s34
W2 z

Similarly for any value of y there are at most [V 27] values of a
and hence

Z N—s2 9sv2 z (2 N—l) 1—(sf2) < 2 (s > 4).
a,y "(N

Hence, finally,
|E| < 4 (log N)—=".

For the rest of the proof of this lemma we suppose 0 €z E and
suppress the argument 6. Now consider a general

R“._!U (O, v 2_]-).

By expressing # and v in the binary scale and making use of the
basic identities

A',R;\', = A‘lR.\'g + .r\'ng3 ; Ra, p)= R(a, v)+ R(y,B)
we have
Ru:lv (O; v 2_1) = Z* I‘a,zl; b,z

where the * indicates a sum depending on # and v in which each pair
of values y, z occurs at most once. Hence

|Rysv (0,027")| < As'* log"* N 5 N 2'ht=3 < Ag' log”* N - N'I:

%Y/ -
oV < N

z >0
as required.

We now complete the proof of the lemma. If 0 <<n << N we can
find a w2V such that w2V < N < (w4 1) 2V << u 2V 4 §': N':, Hence
from (15) and the trivial inequalities | R, ,| < |R,|+ | Ros| < |Ra|+ b
we have

|R, (0, v 277")| < As'? N2 logr* N + s'2 N2 < As'? N2 ]og™'* N.
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Next, if v, w are any two integers in the range 0 < v, w << 2V we have
|R, (w277, v277)| < |R,(0,w277)|+ |R,(0,v277)| < As'2 N2 ]og?/* N.
In particular
| R, (05, 6; + 27V)| < As'» N2 logr/* N

if 6, is of the form v2~7. Suppose now {§—d,} < 2~7. Then, by definition,

Rn (61’ 6) == Fn (61’ 6) —n {6—61}

R, (8,0, +27")=F, (6,0, +27")—n277

0

< Fn (61: 6) < Fn (61’ 61+ 2—V)’
where

0<n{d—68)<n2? <N2V <4sh Nk
Hence
IRn(al» 6)| < |Rn (617 61 + 2—V)| + 4 ’51/’ Nl/a < Asl/’ N112 logp/s N'

Finally, if a, 8 are any numbers we can find a,, f; of the form » 2~
such that {a—a,} <277, {#—pB;} < 277. Then

| By (0, B)| < |B,(ay, a)| + | By (By, B)] + | By (ay, B1)| < As'= N':log?* N
for all n, a, B. Since
R, = M%X | B, (a, B)]

this proves the lemma.

5. An elementary lemma. Before going to the proof of the theorem
we give an almost trivial lemma. We again suppress the argument 0.

Lemma 5. Let the sequence of functions

(16) fl"",fN

be decomposed into a number (say t) of distinct subsequences:
(10 1

(17) :
)

so that every element in (16) occurs just once in (17) and vice-versa. Suppose
also that the elements of any row of (17) occur in the same order in (16).
Then

Max R,(0) < Max R (0)+ ...+ Max R ()

n<N NNy n<Ny

where the upper affixzes in the R refer to the sequence f&.



185

For we have

e

Bowf)=3 r@fif)= 3 3 r(ap:f7)=3 R (ap)

T=1v, =1

for some integers n,. Hence

-~

Max R, = Max|R a, B)| < z Max

n<N

RY (¢, f)] = 3 Max R,

T=1ny <Ny
n<V n,gA\,
6. Proof of the theorem.
We first adapt lemma 4.
Lemma 6. Suppose the conditions of the theorem are satisfied. Then

there is an absolute constant A, and a constant C depending only on the
function @(n) such that for any given N > C, the inequality

Max Ry (0) < 4, n'" log': N log log N g— (V)

n<N
holds except, possibly, in a set Ey of 0 of measure
|Ey| <log™2N.

We shall denote by C a constant depending only on the function
@(n), not necessarily the same in different contexts (so ¢ of (ii) of the
theorem is a C). Put
(18) p=3
and let s= s, and t=t, be the integers

(19) s=([loglog N1+ 1, t= 959—!(05)2\7] + 1.

We may assume that N is so large that
(20) s>4, t<log?N

by condition (ii) of the theorem.

The proof depends on decomposing the sequence f,,..., fy into ¢
subsequences, in the sense of lemma 5, and then applying lemma 4 to
the subsequences.

Consider the ¢ subsequences

B9 @=1,...,10)

where

(r) _ 7
n fin—l)!f'n IAI‘_

We now estimate the sum &%, (M > N/:) of lemma 4 for each of
the subsequences f/:

wes [ Ta'Ti(0)
‘,(1) = 48_1 Z !m + 2 v 7°? J’f’(i)l(g)’de

i~ J«‘ll

=(4s—1) 0,4+ 20, (say).
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Now by (i) and (ii) of the theorem,

o0
2 1< + S e—v..—on <0 < oo

and a fortior:

g, <C.
Also, if 0 <t <7,
7. (0) fo . ® _ -
Jatil T Tlebi—lttT < e F@Fi—lt+n—. —g@+i—2t+T+1)
(1) ! 0
fa+a'(0) f(a+:i—1) t+z
< e—l‘l’(i)

since p(n) is non-decreasingand a + j —2¢t+ 1+ 1= (a 47— 2) (t—1) +
+(—1)4+a+7 > j. Hence

oy < Z j:’.s e—te i)
isM
< Z 7‘23_*_ Z eleogi—w(i)

log j< J1ogN log j> J/log N
isM

= 03+ g, (say).
But trivially ¢; << N+ if N is Jarge enough. Further
to(j) = te (N)log—! Nloglog— N log jlog log j > 6 log j log log j
by the monotonicity of log » log log n ¢~ (n) and hence

A < Z e‘.’.slog j—=0 log j log log j
log i>)1og N

< Ze—logiloglogi < A < oo
since 2s=2[loglog N]+4 2 < 5loglogj if logj > log N. Combining
these inequalities we deduce

1 s 1
(21) @f,"fu<4sal—|—203—}-20'4<0.3—|—2N/'+A<(;:l—-l) < N

for N greater than a C, the third inequality in (21) being a trivial
deduction from (19). Hence S\, < M for all M > N/ and, by lemma 4
applied to {7 it follows that

Max R (6) < As'» NJ:log?* N,

n<N,
except, possibly, in a set E{ (say) of measure
|EG| < 4log=2 N..
Write
Ey=U Ef.
Then in the first place

4tlog—> (%:: — 1)
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by (18) and (20) if N is greater than a C. Also, provided 0 €= E, we have
t
Max Ry (0) <3 Max W (0)
n< N T=1 1y SN,
< Ats: (f\'i + 1)1/’ logr'* N
= t . g
< A t‘/u 8‘/:: Aﬂ/’: logl'/’z N
since each N, < (N/t)+ 1 << N. Hence using the values (18), (19) we have
Max R,(0) < A N':log"’: N log log N ¢~ (N)

n<N
which proves the lemma.
It is now an easy matter to prove the theorem. The proof follows
familiar lines.
We shall first prove that for almost all § there is a 7'y(0) such that
Max Ny (0) < 4, 22T log' 27 log log 27 ¢/ (27)
N2l
for al T > T,(0) where A, is the A4, of lemma 6. For if Ey is the E of
lemma 6, that lemma shows that

Z JEle
<

is convergent. Hence for almost all 6 there is a T(0) such that
Oe=E,y all (T >T,).
Now put Ny(0) = 2%®  Then for all N > Ny(0) there is a T' > Ty(0)
such that N < 2T <{ 2 N. But then
Ry(0) < Max Ny(0) < A (2N)"=-log” 2N -laglog 2 N ¢~ (N)

Ngal
since @(n) is non-decreasing, and finally
Ny (M) < A N':log" N log log N ¢ (N)
for some A. This proves the theorem.

The University, Manchester.
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