MATHEMATICS

SOME METRICAL THEOREMS OF DIOPHANTINE APPROXIMATION. IV
BY
J. W. S. CASSELS
The University, Manchester

(Communicated by Prof. J. G. van der Corput at the meeting of Nov. 26, 1949)

1. Introduction.

This paper is in some ways a continuation of III and uses the same notation as far as possible. It is, however, completely self-contained.

Throughout this paper let

$$
f_{1}(\theta), f_{2}(\theta), \ldots, f_{n}(\theta), \ldots
$$

be a sequence of functions with positive monotonely non-decreasing continuous derivatives all defined in the range ${ }^{1}$)

$$
0 \leqslant \theta \leqslant 1 .
$$

We shall denote by $\{x\}$ the fractional part of x. For $0 \leqslant \alpha \leqslant \beta \leqslant 1$ we define $F_{N}(\alpha, \beta: \theta)$ to be the number of $n \leqslant N$ such that

$$
\begin{equation*}
\alpha \leqslant\left\{f_{n}(\theta)\right\}<\beta \tag{1}
\end{equation*}
$$

Further we put

$$
R_{N}(\alpha, \beta: \theta)=F_{N}(\alpha, \beta: \theta)-N(\beta-\alpha)
$$

so that $R_{N}(\alpha, \beta: \theta)$ is the excess of the number of solutions of (1) over the number to be expected at random.

Finally we put

$$
\Re_{N}(\theta)=\operatorname{Max}_{\alpha, \beta}\left|R_{N}(\alpha, \beta: \theta)\right|
$$

so that $\Re_{N}(\theta)=N D(N)$ in Koksma's notation.
In III of this series I proved, and Erdös-Koksma [1] proved it independently and practically simultaneously by a different method, that if $f_{m}^{\prime}(\theta)-f_{n}^{\prime}(\theta)$ is monotonic for all m, n and if

$$
\begin{equation*}
\left|f_{m}^{\prime}(\theta)-f_{n}^{\prime}(\theta)\right| \geqslant K>0 \tag{2}
\end{equation*}
$$

for some K and all $m, n \neq m, \theta$ then for almost all θ

$$
\begin{equation*}
\Re_{N}(\theta)=O\left(N^{1 / \Delta} \log ^{(\varepsilon / 2)+\varepsilon} N\right) \tag{3}
\end{equation*}
$$

${ }^{1}$) The extension of the results proved to a more general interval $a \leqslant \theta \leqslant b$ instead of $0 \leqslant \theta \leqslant 1$ is trivial.

In this paper I show that the estimate (3) can be improved if the derivatives $f_{n}^{\prime}(\theta)$ increase fast enough.

We denote by $A_{0}, A_{1}, A_{2}, \ldots$ positive absolute constants and by A an absolute positive constant, not necessarily the same in all contexts.

Theorem. Suppose there is a positive function $\varphi(n)$ of the positive integer variable n such that

$$
\text { (i) } f_{n}^{\prime}(\theta) \geqslant e^{q(n)} f_{n-1}^{\prime}(\theta), f_{1}^{\prime}(\theta) \geqslant 1
$$

for all θ and $n>1$.
(ii) $\log n \log \log n \geqslant \varphi(n) \geqslant c>0$
when n is large enough, where c is some constant independent of n.
(iii) $\varphi(n)$ and $\log n \log \log n \varphi^{-1}(n)$
are monotonic non-decreasing when n is large enough.
Then for almost all θ there is an $N_{0}=N_{0}(\theta)$ such that

$$
\begin{equation*}
\Re_{N}(\theta) \leqslant A_{0} N^{1 / 2} \log ^{1 / 2} N \log \log N \varphi^{-1 / 2}(N) \quad\left(N>N_{0}\right) \tag{4}
\end{equation*}
$$

where A_{0} is some absolute constant.
We note the two extreme cases.
$\varphi(n)=\log n \log \log n$. Then (4) becomes $\Re_{N}(\theta) \leqslant A_{0} N^{1 / 2} \log \log ^{1 / 2} N$. This is best possible apart from the constant A_{0}. Indeed it is an immediate consequence of the statistical "law of the iterated logarithm" when μ_{n} is any strictly increasing sequence of integers and $f_{n}(\theta)=2^{\mu_{n}} \theta$ that

$$
\underset{N}{\lim . \sup \cdot \frac{\Re_{N}(\prime)}{N^{1 / 2} \log \log ^{1 / 2} N}} \geqslant \lim . \text { sup. } \frac{R_{N}(0,1 / 2: 9)}{N^{1 / 2} \log \log 9^{1 / 2}} N_{N}=2^{-1 / 2}
$$

for almost all 0 , however quickly μ_{n} tends to infinity. [cf. Khintchine [3]].
$\varphi(n)=c=$ constant. This is the "lacunary" case and then (4) becomes $\Re_{-v}(\theta) \leqslant A_{0} c^{-1 / 2} N^{1 / 2} \log { }^{1 / 2} N \log \log N$. This estimate is stronger than one obtained by Erdös-Koksma [2], who, moreover, required a condition on $f_{n}^{\prime \prime}(0)$.

2. Notation.

We use the following symbols:-
$[x]$: the greatest integer not greater than x.
$\|x\|$: the difference between x and the nearest integer, i.e.

$$
\|x\|=\operatorname{Min}_{n=0, \pm 1, \pm 2, \ldots}|n-x| .
$$

$\{x\}: \quad$ the fractional part of x. Thus $x=[x]+\{x\}$.
Define a function $r(\alpha, \beta: x)$ of the variables α, β, x by

$$
\begin{gathered}
r(\alpha, \beta: x)=1-\{\beta-\alpha\} \text { if }\{x-\alpha\}<\{\beta-\alpha\} \\
=-\{\beta-\alpha\} \text { otherwise. }
\end{gathered}
$$

It is easily verified that

$$
\begin{equation*}
R_{N}(\alpha, \beta: \theta)=\sum_{n \leqslant N} r\left(\alpha, \beta: f_{n}(\theta)\right) \tag{5}
\end{equation*}
$$

when $0 \leqslant \alpha \leqslant \beta \leqslant 1$ (i.e. whenever the symbol $R_{N}(\alpha, \beta: \theta)$ has been defined). We shall use the equation (5) to define $R_{N}(\alpha, \beta: \theta)$ for other values ${ }^{1}$) of α, β. More generally we define

$$
{ }_{N_{1}} R_{N_{2}}(\alpha, \beta: \theta)=\sum_{N_{1}<n \leqslant N_{2}} r\left(\alpha, \beta: f_{n}(\theta)\right) .
$$

We note also
Lemma 1. For each integer $n \geqslant 1$ the function $r=r(\alpha, \beta: x)$ satisfies

$$
r^{n}=U_{n} r+V_{n} \gamma
$$

where $\gamma=\|\beta-\alpha\|$ and U_{n}, V_{n} are independent of x. Further

$$
\left|U_{n}\right| \leqslant 1, \quad\left|V_{n}\right| \leqslant 1, \quad V_{1}=0
$$

For $r(\alpha, \beta: x)$, when α, β are fixed, takes only the values $1-\gamma$ and $-\gamma$. The identity then follows with

$$
\begin{aligned}
& U_{n}=(1-\gamma)^{n}-(-\gamma)^{n} \\
& V_{n}=(1-\gamma) U_{n-1}
\end{aligned}
$$

and the rest is trivial.

3. An estimation lemma.

Our proof depends essentially on the following lemma:-
Lemma 2. Suppose g_{1}, \ldots, g_{l} are any l of the functions f_{1}, f_{2}, \ldots (l any integer). Write $r(x)$ for $r(\alpha, \beta: x)$ where $\gamma=\|\beta-\alpha\|$ and α, β are any numbers. Then

$$
\begin{aligned}
\mid \int_{0}^{1} r\left(g_{1}(\theta)\right) r\left(g_{2}(\theta)\right) \ldots & r\left(g_{l}(\theta)\right) d \theta \mid \\
& \leqslant 2 \gamma\left\{\frac{2 l-1}{g_{l}^{\prime}(0)}+2 \int_{0}^{1} \frac{g_{1}^{\prime}(\theta)+\ldots+g_{l-1}^{\prime}(\theta)}{g_{l}^{\prime}(\theta)} d \theta\right\}
\end{aligned}
$$

The case $l=2$ is practically the special case $h_{m}(x)=h_{n}(x)=r(x)$, $\varphi_{m}=\varphi_{n}=\gamma$ of lemma 2 in paper II. The proof for general l runs similarly.

Write

$$
r^{*}(x)=\int_{0}^{x} r(\xi) d \xi
$$

so that

$$
r^{*}(1)=\int_{0}^{1} r(x) d x=0, \quad\left|r^{*}(x)\right| \leqslant \gamma
$$

[^0]We first show that if $g(\theta)$ is one of the $g_{j}(\theta)$

$$
\begin{equation*}
\left|\int_{a}^{b} r(g(\theta)) d \theta\right|<\frac{2 \gamma}{g^{\prime}(a)} \tag{6}
\end{equation*}
$$

whenever $0 \leqslant a \leqslant b \leqslant 1$. Indeed

$$
\int_{a}^{b} r(g(\theta)) d \theta=\int_{\theta=a}^{b} \frac{r(g(\jmath))}{g^{\prime}(\jmath)} d(g(\theta))=\left[\frac{r^{*}(g(\jmath))}{g^{\prime}((\jmath)}\right]_{\theta-a}^{b}-\int_{\theta=a}^{b} r(g(\theta)) d\binom{1}{g^{\prime}(,())}
$$

and hence

$$
\left|\int_{a}^{b} r(g(0)) d \theta\right| \leqslant \frac{\gamma^{\prime}}{g^{\prime}(a)}+\frac{\gamma}{g^{\prime}(b)}+\int_{0 \sim a}^{b} \gamma\left|d\left(\frac{1}{g^{\prime}(\bar{j})}\right)\right| \leqslant \frac{2 \gamma}{g^{\prime}(a)}
$$

by the monotonicity of $g^{\prime}(\theta)$.
Now let $\lambda_{i}^{(j)}\left(i=1,2, \ldots, k_{j}\right)$ be the set of values of θ for which either $\left\{g_{j}(\theta)\right\}=\alpha$ or $\left\{g_{j}(\theta)\right\}=\beta(j=1, \ldots, l-1)$ i.e. the set of points of discontinuity of $r\left(g_{j}(\theta)\right)$. Further let μ_{1}, \ldots, μ_{m} be the numbers $0,1, \lambda_{i}^{(j)}(j=1, \ldots, l-1)$ arranged in order of magnitude. Then the product

$$
r\left(g_{1}(\theta)\right) r\left(g_{2}(\theta)\right) \ldots r\left(g_{l-1}(\theta)\right)
$$

is constant and numerically less than 1 in each interval $\mu_{n}<\theta<\mu_{n+1}$. Hence

$$
\left\{\begin{align*}
\left|\int_{0}^{1} r\left(g_{1}(0)\right) \ldots r\left(g_{l}(\theta)\right) d 0\right| & <\sum_{n=1}^{m-1}\left|\int_{\mu_{n}}^{\mu_{n}+1} r\left(g_{l}(\theta)\right) d \theta\right| \leqslant 2 \gamma^{m-1} \sum_{n=1}^{m} \frac{1}{g_{l}^{\prime}\left(\mu_{n}\right)}(\text { by }(6)) \tag{7}\\
& \leqslant 2 \gamma\left\{\frac{2 l-1}{g_{l}^{\prime}(0)}+\sum_{j=1}^{i-1} \sum_{i=3}^{k_{j}} \bar{g}_{l}^{\prime}\left(\lambda_{i}^{(j)}\right)\right\}^{\prime}
\end{align*}\right.
$$

But

$$
\int_{\substack{\lambda_{i-2}^{(j)}}}^{\lambda_{i}^{(j)}} g_{j}^{\prime}(0) d \theta=\int_{\theta=\lambda_{i-2}^{(j)}}^{\lambda_{i}^{(j)}} d g_{j}(0)=1\left(3 \leqslant i \leqslant k_{j}\right)
$$

and hence

$$
\begin{equation*}
\sum_{i=3}^{k_{j}} \frac{1}{g_{l}^{\prime}\left(\lambda_{i}^{(j)}\right)}=\sum_{i=3}^{k_{j}} \int_{\substack{x_{i}^{(j)}}}^{x_{i}^{(j)}} \frac{g_{j}^{\prime}(\theta)}{g_{j}^{\prime}\left(\bar{j}_{i}^{(j)}\right)} d 0 \leqslant \sum_{i=3}^{k_{j}} \int_{\substack{\lambda_{i=2}^{(j)}}}^{\lambda_{i}^{(j)}} \frac{g_{j}^{\prime}(\theta)}{g_{l}^{\prime}(\theta)} d 0 \leqslant 2 \int_{0}^{1} \frac{g_{j}^{\prime}(\theta)}{g_{l}^{\prime}(\theta)} d \theta . \tag{8}
\end{equation*}
$$

The lemma follows on substituting (8) in (7).
We note also the ${ }^{1}$)
Corollary. Suppose g_{1}, \ldots, g_{M} are any M of the functions f_{1}, f_{2}, \ldots where $M>l$

Then
(9)

$$
\left\{\begin{array}{l}
\sum_{j_{1}<j_{3}<\ldots<j_{l}}\left|\int_{0}^{\overline{1}} r\left(g_{j_{1}}\right) r\left(g_{j_{2}}\right) \ldots r\left(g_{j_{l}}\right) d \theta\right| \\
\leqslant 2 \gamma\left\{(2 l-1) \sum_{j=1}^{M} g_{j^{\prime}(0)}^{\prime^{\prime}}+2 \sum_{i<j \leqslant M} j^{l-=2} \int_{0}^{1} g_{i}^{\prime}(\theta)\right. \\
g_{j}^{\prime}(\theta)
\end{array} \theta_{1}^{\prime} .\right.
$$

${ }^{1}$) We suppress the argument θ except when its absence might cause ambiguity.

This follows directly by summation. We note that the right hand side of (9) is an increasing function of l (if g_{1}, \ldots, g_{M} remain fixed).
4. The principal lemmas. The kernel of the proof lies in the next two lemmas.

Lemma 3. Let α, β be any two numbers and let $\gamma=\|\beta-\alpha\|$. Write $r(x)$ for $r(\alpha, \beta: x)$. Suppose that g_{1}, \ldots, g_{M} are any M of the functions f_{n} and that

$$
M_{\gamma}=M\|\beta-\alpha\| \geqslant s
$$

where s is a positive integer. Put

$$
\mathrm{r}(\theta)=\sum_{j=1}^{M} r\left(g_{j}(\theta)\right)
$$

and suppose

$$
\mathfrak{S}(\text { say })=(4 s-1) \sum_{j=1}^{M} \frac{1}{g_{j}^{\prime}(0)}+2 \sum_{i<j \leqslant M} j^{2 s-2} \int_{0}^{1} \frac{g_{i}^{\prime}(\theta)}{g_{j}^{\prime}(\theta)} d \theta \leqslant M .
$$

Then

$$
\int_{0}^{1} \mathrm{r}^{2 s}(\theta) d \theta \leqslant 2 \cdot \frac{(2 s)^{2 s+2}}{s!} \cdot(M \gamma)^{s}
$$

The proof depends on setting up an identity of the type

$$
\begin{equation*}
\mathfrak{r}^{2 s}(\theta)=D_{0}+\sum_{l=1}^{2 s} D_{l_{j_{1}}<\ldots<j_{l}} r\left(g_{j_{1}}\right) r\left(g_{j_{2}}\right) \ldots r\left(g_{j_{l}}\right) \tag{10}
\end{equation*}
$$

by expanding and applying lemma 1 , where $D_{0}, D_{1}, \ldots, D_{2 s}$ are independent of θ and satisfy certain inequalities. The lemma will follow from the corollary to lemma 2, on integration.

In the first place we have an identity of the type

$$
\mathrm{r}^{2 s}(\theta)=\sum_{\substack{n \\ a_{1} \ldots, a_{n}}} B\left(a_{1}, \ldots, a_{n}\right) \sum_{j_{1}<\ldots<j_{n}} r^{a_{1}}\left(g_{j_{1}}\right) \ldots r^{a_{n}}\left(g_{j_{n}}\right)
$$

where
(i) the first sum is over all sets of positive integers n, a_{1}, \ldots, a_{n} with

$$
\sum_{\nu=1}^{n} a_{\nu}=2 s
$$

(ii) the numbers $B\left(a_{1}, \ldots, a_{n}\right)$ are non-negative integers and

$$
\begin{equation*}
\sum_{\substack{n \\ a_{1}, \ldots, a_{n}}} B\left(a_{1}, \ldots, a_{n}\right) \leqslant \underbrace{(1+1 \ldots+1)^{2 s}}_{2 s \text { summands }} \leqslant(2 s)^{2 s} . \tag{11}
\end{equation*}
$$

Further, $B\left(a_{1}, \ldots, a_{n}\right)$ is unchanged by permutation of a_{1}, \ldots, a_{n}.

Substituting from lemma 1 , we obtain ${ }^{1}$)

$$
\begin{equation*}
\mathrm{r}_{\substack{s s \\ v_{1} \ldots \ldots, b_{l}, c_{1} \ldots . \ldots c_{m}}} B\left(b_{1}, \ldots, b_{l}, c_{1}, \ldots, c_{m}\right) U_{b_{1}} \ldots U_{b_{l}} V_{c_{1}} \ldots V_{c_{m}} \sum_{\substack{j_{1}<\ldots<j_{l} \\ k_{1}<\ldots<k_{m} \\\left(j_{1}, \ldots, j_{l}, k_{1}, \ldots, k_{m}\right)_{F}}} \gamma^{m} r\left(g_{j_{1}}\right) \ldots r\left(g_{j_{l}}\right), \tag{12}
\end{equation*}
$$

where $l, m, b_{1}, \ldots, b_{l}, c_{1}, \ldots, c_{m}$ are any set of numbers such that

$$
\sum_{\lambda=1}^{l} b_{\lambda}+\sum_{\mu=1}^{m} c_{\mu}=2 s ; \quad b_{\lambda}>0, c_{\mu}>0 ; l, m \geqslant 0
$$

Since $V_{1}=0$, we may assume that

$$
c_{\mu} \geqslant 2 \quad(\mu=1, \ldots, m)
$$

and hence

$$
m \leqslant s ; \quad m \leqslant s-1 \quad \text { if } l>0
$$

We now deduce the identity (10) where $D_{0}, \ldots, D_{2 s}$ are independent of θ (but may depend on M, γ as well as s) and satisfy the inequalities

$$
\left|D_{0}\right| \leqslant \frac{(2 s)^{2 s}}{s!}\left(M_{\gamma}\right)^{s} \quad ; \quad\left|D_{l}\right| \leqslant \frac{(2 s)^{2 s}}{(s-1)!}\left(M_{\gamma}\right)^{s-1} \quad(l \geqslant 1)
$$

Indeed if D_{0} is the sum of the terms in (12) independent of the r 's, we have

$$
\begin{aligned}
\left|D_{0}\right| & =\left|\sum_{\substack{m \\
c_{1}, \ldots c c_{m}}} B\left(c_{1}, \ldots, c_{m}\right) V_{c_{1}} \ldots V_{c_{m}} \sum_{k_{1}<\ldots<k_{m} \leqslant M} \gamma^{m}\right| \\
& \leqslant\left|\sum_{\substack{m \\
c_{1}, \ldots c_{m}}} B\left(c_{1}, \ldots, c_{m}\right) \frac{(M \gamma)^{m}}{m!}\right| \text { since }\left|V_{c}\right| \leqslant 1 \\
& \leqslant\left|\sum_{\substack{m \\
c_{1}, \ldots, c_{m}}} B\left(c_{1}, \ldots, c_{m}\right)\right| \frac{(M \gamma)^{s}}{s!} \text { since } m \leqslant s, M_{\gamma} \geqslant s \\
& \leqslant \frac{(2 s)^{2 s s}}{s!}(M \gamma)^{s} \text { by (11). }
\end{aligned}
$$

Similarly the coefficient of a term $r\left(g_{j_{1}}\right) \ldots r\left(g_{j_{l}}\right)$ is

$$
D_{l}=\sum_{\substack{u_{1} \\ l_{1}, \ldots, b_{l} \\ c_{1}, \ldots, c_{m}}} B\left(b_{1}, \ldots, b_{l}, c_{1}, \ldots, c_{m}\right) U_{l_{1}} \ldots U_{l_{l}} V_{c_{1}} \ldots V_{c_{m}} \sum_{\substack{k_{1}<\ldots<k_{m} \leqslant M \\\left(j_{1}, \ldots, j_{l}, k_{1}, \ldots, k_{m}\right)_{+}}} \gamma^{m}
$$

which clearly depends only on l (and M, γ, s) and not on the individual numbers j_{1}, \ldots, j_{l}. Further, almost as for D_{0},

$$
\begin{aligned}
\left|D_{l}\right| & \leqslant\left|\sum_{\substack{m \\
u_{1}, \ldots, b_{l} \\
c_{1} \ldots, c_{m}}} B\left(b_{1}, \ldots, b_{l}, c_{1}, \ldots, c_{m}\right) \frac{(M \gamma)^{m}}{m!}\right| \\
& \leqslant\left|\sum_{\substack{n \\
a_{1}, \ldots, a_{n}}} B\left(a_{1}, \ldots, a_{n}\right)\right|_{(s-1)!}^{(M \gamma)^{s-1}} \text { since } M \gamma \geqslant s, m \leqslant s-1 \\
& \leqslant \frac{(2 s)^{2 s}}{(s-1)!}(M \gamma)^{s-1} .
\end{aligned}
$$

[^1]Now integrate (10) and we obtain

$$
\begin{aligned}
\int_{0}^{1} \mathrm{r}^{2 s}(\theta) d \theta & \leqslant \frac{(2 s)^{2 s}}{s!}(M \gamma)^{s}+\frac{(2 s)^{2 s}}{(s-1)!}\left(M_{\gamma}\right)^{s-1} \sum_{l=1}^{2 s}\left|\sum_{j_{1}<\ldots<j_{l}} \int_{0}^{1} r\left(g_{j_{1}}\right) \ldots r\left(g_{j_{l}}\right) d \theta\right| \\
& \leqslant \frac{(2 s)^{2 s}}{s!}(M \gamma)^{s}+\frac{(2 s)^{2 s}}{(s-1)!}\left(M_{\gamma}\right)^{s-1} \cdot 2 s \cdot 2 \gamma \subseteq
\end{aligned}
$$

since, by the corollary to lemma 2, each of the terms of the outer summation is not greater than $2 \subseteq$. Since $\subseteq \leqslant M$ by hypothesis, this proves the lemma.

Lemma 4. Suppose $N>100$ and suppose there is a positive integer $s>4$ such that

$$
\left\{\begin{align*}
\Im_{a, M} & =(4 s-1) \sum_{j=1}^{M} \frac{1}{f_{a+j}^{\prime}(0)}+2 \sum_{i<j \leqslant M} j^{2 s-2} \int_{0}^{1} \frac{f_{a+i}^{\prime}(\theta)}{f_{a+j}^{\prime}(\theta)} d \theta \tag{13}\\
& \leqslant M
\end{align*}\right.
$$

for all positive integers a, M with $a+M \leqslant N, M \geqslant N^{1 / 2}$. Then there is an absolute constant A_{1} such that

$$
\operatorname{Max}_{n \leqslant N} \Re_{N}(\theta) \leqslant A_{1} s^{i / s} N^{1 / 2} \log ^{n / s} N
$$

except, possibly, in a set E of θ of measure

$$
\begin{equation*}
|E| \leqslant 4 \log ^{-2 p} N \tag{14}
\end{equation*}
$$

where p is any positive number.
Choose U, V integers such that

$$
2^{2 U} \leqslant s N<2^{2 U+2} \quad, \quad 2^{2 V+2} \leqslant s^{-1} N<2^{2 V+4}
$$

We shall show first that there is a set E for which (14) holds and

$$
\begin{equation*}
\underset{\substack{u=0,1, \ldots, N_{2}-U_{1} \\ v=0,1, \ldots, 2^{V}-1}}{\operatorname{Max}}\left|R_{u 2} U\left(0, v 2^{-V}: \theta\right)\right| \leqslant A s^{1 / 2} N^{1 / 4} \log ^{p / s} N \tag{15}
\end{equation*}
$$

except, possibly, when $\theta \in E$.
Let a, y, b, z be any four integers with

$$
\begin{aligned}
& y \geqslant U ; 0 \leqslant a 2^{y}<(a+1) 2^{y} \leqslant N \\
& 0<z \leqslant V ; 0 \leqslant b 2^{-z}<(b+1) 2^{-z} \leqslant 1
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathfrak{r}(\theta)=\mathrm{r}_{a, v: b, z}(\theta) & ={ }_{a 2^{\nu} \nu} R_{(a+1) 2^{y}}\left(b 2^{-z}, \overline{b+1} 2^{-z}: \theta\right) \\
& =\sum_{j=1}^{2^{y}} r\left(f_{a 2^{2} v_{+j}}(\theta)\right),
\end{aligned}
$$

where $r(x)=r\left(b 2^{-z}, \overline{b+1} 2^{-z}: x\right)$ satisfies the conditions of lemma 3 by (13), and so

$$
\int_{0}^{1} \mathrm{r}^{2 s}(\theta) \leqslant 2 \cdot \frac{(2 s)^{2 s+2}}{s!} 2^{s(y-z)}
$$

Hence

$$
\left|\mathrm{r}_{a, y ; b, z}(0)\right| \leqslant A s^{1 / 2} \cdot \log ^{n / s} N \cdot N^{1 / /} 2^{1 / 4 y-z}
$$

except, possibility, in a set $E_{a, y: t, z}$ of θ of measure

$$
\left|E_{a, y ; b, z}\right| \leqslant(\log N)^{-2 \mu} \cdot N^{-s / 2} 2^{s / 2(\mu-z)} .
$$

We shall take for the E of the theorem

$$
E=\cup E_{u, y ; 1,: c}
$$

Then certainly

$$
|E|<\sum\left|E_{a, y ; b, z}\right|<(\log N)^{-2 p}\left(\sum_{u, y} N^{-s / 2} 2^{s y /(2)}\right)\left(\sum_{b, z} 2^{-(s z / 2)}\right) .
$$

Now for any given value of z there are 2^{z} values of b and hence

$$
\sum_{l, z} 2^{-s z / L}=\sum_{z} 2^{-\left(\frac{s-2}{2}\right) \tilde{z}} \leqslant 2 \quad(s \geqslant 4) .
$$

Similarly for any value of y there are at most [$N 2^{-u}$] values of a and hence

$$
\sum_{a, y} N^{-s / 2} 2^{s y / 2} \leqslant \sum_{2^{v} \leqslant s}\left(2^{y} N^{-1}\right)^{1-(s / 2)} \leqslant 2 \quad(s \geqslant 4)
$$

Hence, finally,

$$
|E|<4(\log N)^{-2 \nu}
$$

For the rest of the proof of this lemma we suppose $0 \epsilon^{\prime}=E$ and suppress the argument θ. Now consider a general

$$
R_{u \Sigma U}\left(0, v 2^{-r}\right) .
$$

By expressing u and v in the binary scale and making use of the basic identities

$$
{ }_{N_{1}} R_{N_{3}}={ }_{N_{1}} R_{N_{2}}+{ }_{N_{2}} R_{N_{3}} ; R(\alpha, \beta)=R(\alpha, \gamma)+R(\gamma, \beta)
$$

we have

$$
R_{u \Omega U}\left(0, v 2^{-r}\right)=\sum^{*} \mathrm{r}_{a, y ; b, z}
$$

where the * indicates a sum depending on u and v in which each pair of values y, z occurs at most once. Hence

$$
\left|R_{u 2 U}\left(0, v 2^{-r}\right)\right| \leqslant A s^{1 / 2} \log ^{v / s} N \sum_{\substack{2^{y} \leq y \\ z \geq 0}} N^{1 / 4} 2^{1 / /(y-z)}<A s^{1 / 2} \log ^{n / s} N \cdot N^{1 / 3}
$$

as required.
We now complete the proof of the lemma. If $0 \leqslant n<N$ we can find a $u 2^{U}$ such that $u 2^{U} \leqslant N \leqslant(u+1) 2^{U} \leqslant u 2^{U}+s^{1 / 2} N^{1 / 3}$. Hence from (15) and the trivial inequalities $\left|R_{a+b}\right| \leqslant\left|R_{a}\right|+{ }_{a} R_{a+b}\left|\leqslant\left|R_{a}\right|+b\right.$ we have

$$
\left|R_{n}\left(0, v 2^{-r}\right)\right| \leqslant A s^{1 / 2} N^{1 / 2} \log ^{n / s} N+s^{1 / 2} N^{1 / 2}<A s^{1 / 2} N^{1 / 2} \log ^{p / s} N
$$

Next, if v, w are any two integers in the range $0 \leqslant v, w<2^{v}$ we have $\left|R_{n}\left(w 2^{-V}, v 2^{-V}\right)\right| \leqslant\left|R_{n}\left(0, w 2^{-V}\right)\right|+\left|R_{n}\left(0, v 2^{-V}\right)\right| \leqslant A s^{1 / 2} N^{1 / 2} \log ^{v / s} N$. In particular

$$
\left|R_{n}\left(\delta_{1}, \delta_{1}+2^{-V}\right)\right| \leqslant A s^{1 / 2} N^{1 / 2} \log ^{p / s} N
$$

if δ_{1} is of the form $v 2^{-V}$. Suppose now $\left\{\delta-\delta_{1}\right\}<2^{-V}$. Then, by definition,

$$
\begin{aligned}
& R_{n}\left(\delta_{1}, \delta\right)=F_{n}\left(\delta_{1}, \delta\right)-n\left\{\delta-\delta_{1}\right\} \\
& R_{n}\left(\delta_{1}, \delta_{1}+2^{-V}\right)=F_{n}\left(\delta_{1}, \delta_{1}+2^{-V}\right)-n 2^{-V} \\
& 0 \leqslant F_{n}\left(\delta_{1}, \delta\right) \leqslant F_{n}\left(\delta_{1}, \delta_{1}+2^{-V}\right)
\end{aligned}
$$

where

$$
0 \leqslant n\left\{\delta-\delta_{1}\right\} \leqslant n 2^{-V} \leqslant N 2^{-V} \leqslant 4 s^{1 / 2} N^{1 / 2}
$$

Hence

$$
\left|R_{n}\left(\delta_{1}, \delta\right)\right| \leqslant\left|R_{n}\left(\delta_{1}, \delta_{1}+2^{-V}\right)\right|+4 s^{1 / 2} N^{1 / 2} \leqslant A s^{1 / 2} N^{1 / 2} \log ^{p / s} N
$$

Finally, if α, β are any numbers we can find α_{1}, β_{1} of the form $v 2^{-V}$ such that $\left\{\alpha-\alpha_{1}\right\}<2^{-V},\left\{\beta-\beta_{1}\right\}<2^{-V}$. Then

$$
\left|R_{n}(\alpha, \beta)\right| \leqslant\left|R_{n}\left(\alpha_{1}, \alpha\right)\right|+\left|R_{n}\left(\beta_{1}, \beta\right)\right|+\left|R_{n}\left(\alpha_{1}, \beta_{1}\right)\right| \leqslant A s^{1 / 2} N^{1 / 2} \log ^{p / s} N
$$

for all n, α, β. Since

$$
\Re_{n}=\operatorname{Max}_{\alpha, \beta}\left|R_{n}(\alpha, \beta)\right|
$$

this proves the lemma.
5. An elementary lemma. Before going to the proof of the theorem we give an almost trivial lemma. We again suppress the argument θ.

Lemma 5. Let the sequence of functions

$$
\begin{equation*}
f_{1}, \ldots, f_{N} \tag{16}
\end{equation*}
$$

be decomposed into a number (say t) of distinct subsequences:

$$
\left\{\begin{array}{c}
f_{1}^{(1)}, f_{2}^{(1)}, \ldots, f_{N_{1}}^{(1)} \tag{17}\\
\vdots \\
f_{1}^{(1)}, f_{2}^{(t)}, \ldots, f_{N_{t}}^{(1)}
\end{array}\right.
$$

so that every element in (16) occurs just once in (17) and vice-versa. Suppose also that the elements of any row of (17) occur in the same order in (16). Then

$$
\operatorname{Max}_{n \leqslant N} \Re_{n}(\theta) \leqslant \operatorname{Max}_{n \leqslant N_{1}} \Re_{n}^{(1)}(\theta)+\ldots+\operatorname{Max}_{n \leqslant N_{t}} \Re_{n}^{(t)}(\theta)
$$

where the upper affixes in the $\Re_{n}^{(\tau)}$ refer to the sequence $f_{n}^{(\tau)}$.

For we have

$$
R_{n}(\alpha, \beta)=\sum_{\nu=1}^{n} r\left(\alpha, \beta: f_{v}\right)=\sum_{\tau=1}^{t} \sum_{v_{\tau}=1}^{n_{\tau}} r\left(\alpha, \beta: f_{\nu_{\tau}}^{(\tau)}\right)=\sum_{\tau=1}^{t} R_{n_{\tau}}^{(\tau)}(\alpha, \beta)
$$

for some integers n_{τ}. Hence
6. Proof of the theorem.

We first adapt lemma 4.
Lemma 6. Suppose the conditions of the theorem are satisfied. Then there is an absolute constant A_{2} and a constant C_{0} depending only on the function $\varphi(n)$ such that for any given $N>C_{0}$ the inequality

$$
\operatorname{Max}_{n \leqslant N} \Re_{N}(\theta) \leqslant A_{2} n^{1 / 2} \log ^{1 / 2} N \log \log N \varphi^{-1 / 3}(N)
$$

holds except, possibly, in a set E_{N} of θ of measure

$$
\left|E_{N}\right| \leqslant \log ^{-2} N
$$

We shall denote by C a constant depending only on the function $\varphi(n)$, not necessarily the same in different contexts (so c of (ii) of the theorem is a C). Put

$$
\begin{equation*}
p=\mathbf{3} \tag{18}
\end{equation*}
$$

and let $s=s_{N}$ and $t=t_{N}$ be the integers

$$
\begin{equation*}
s=[\log \log N]+1, \quad t=\left[\frac{6 s \log N}{\gamma(N)}\right]+1 . \tag{19}
\end{equation*}
$$

We may assume that N is so large that

$$
\begin{equation*}
s \geqslant 4, \quad t \leqslant \log ^{2} N \tag{20}
\end{equation*}
$$

by condition (ii) of the theorem.
The proof depends on decomposing the sequence f_{1}, \ldots, f_{N} into t subsequences, in the sense of lemma 5, and then applying lemma 4 to the subsequences.

Consider the t subsequences

$$
f_{1}^{(\tau)}, \ldots, f_{x_{\tau}}^{(\tau)} \quad(\tau=1, \ldots, t)
$$

where

$$
f_{u}^{(\tau)}=f_{(n-1) t+\tau}, \quad\left|N_{\tau}-(N / t)\right| \leqslant 1
$$

We now estimate the sum $\Theta_{a, M}^{(\tau)}\left(M \geqslant N_{\tau}^{1 / 2}\right)$ of lemma 4 for each of the subsequences $f_{n}^{(\tau)}$:

$$
\begin{aligned}
\Theta_{a, M}^{(r)} & =(4 s-1) \sum_{j=1}^{M} \frac{1}{f_{a \neq j}^{\prime(r)}(0)}+2 \sum_{i<j \leqslant M} j^{2 s-2} \int_{0}^{1} \frac{f_{a}^{\prime(r)}(\theta)}{f_{a+j}^{\prime(\tau)}(\theta)} d \theta \\
& =(4 s-1) \sigma_{1}+2 \sigma_{2}(\mathrm{say}) .
\end{aligned}
$$

Now by (i) and (ii) of the theorem,

$$
\sum_{n=1}^{\infty} \frac{1}{f_{n}^{\prime \prime}(\theta)} \leqslant 1+\sum_{n=2}^{\infty} e^{-q(2) \ldots-q(n)}<C<\infty
$$

and a fortiori

$$
\sigma_{1}<C
$$

Also, if $0<i<j$,

$$
\begin{aligned}
\frac{f_{a}^{\prime(\tau)}(\theta)}{f_{a+j}^{\prime \prime(t)}(\theta)}=\frac{f_{(a+i-i-1) t+\tau}^{\prime(\theta)}}{f_{(a+j-1)}^{\prime(\theta)} t+\tau} & \left.\leqslant e^{-q(\overline{a+j}=1} \bar{a} t+\tau\right)-\ldots-q(\overline{a+j-2} t+\tau+1) \\
& \leqslant e^{-t \psi(j)}
\end{aligned}
$$

since $\varphi(n)$ is non-decreasing and $\overline{a+j-2} t+\tau+1=(a+j-2)(t-1)+$ $+(\tau-1)+a+j \geqslant j$. Hence

$$
\begin{aligned}
\sigma_{2} & \leqslant \sum_{j \leqslant M} j^{2 s} e^{-t \varphi(j)} \\
& \leqslant \sum_{\log j \leqslant V \operatorname{logN}} j^{2 s}+\sum_{\substack{\log \\
j>V \log N \\
j \leqslant M}} e^{2 s \log j-t \varphi(j)} \\
& =\sigma_{3}+\sigma_{4} \text { (say). }
\end{aligned}
$$

But trivially $\sigma_{3}<N^{1 / 3}$ if N is large enough. Further

$$
t \varphi(j) \geqslant t \varphi(N) \log ^{-1} N \log \log ^{-1} N \log j \log \log j \geqslant 6 \log j \log \log j
$$

by the monotonicity of $\log n \log \log n \varphi^{-1}(n)$ and hence

$$
\begin{aligned}
\sigma_{4} & \leqslant \sum_{\log j \geqslant V^{\prime \log N}} e^{2 s \log j-6 \log j \log \log j} \\
& \leqslant \sum e^{-\log j \log \log j}<A<\infty
\end{aligned}
$$

since $2 s=2[\log \log N]+2<5 \log \log j$ if $\log j \geqslant \log N$. Combining these inequalities we deduce

$$
\begin{equation*}
\bigodot_{a, M}^{(\tau)} \leqslant 4 s \sigma_{1}+2 \sigma_{3}+2 \sigma_{4}<C . s+2 N^{1 / 3}+A<\left(\frac{N}{t}-1\right)^{1 / 2} \leqslant N_{\tau}^{1 / 2} \tag{21}
\end{equation*}
$$

for N greater than a C, the third inequality in (21) being a trivial deduction from (19). Hence $\widetilde{S}_{a, M}^{(\tau)} \leqslant M$ for all $M \geqslant N_{\tau}^{1 / 2}$ and, by lemma 4 applied to $f_{n}^{(\tau)}$ it follows that

$$
\operatorname{Max}_{n \leqslant N_{\tau}} \Re_{n}^{(\tau)}(\theta) \leqslant A s^{1 / 2} N_{\tau}^{1 / \varepsilon} \log ^{p / s} N_{\tau}
$$

except, possibly, in a set $E_{N}^{(\tau)}$ (say) of measure

Write

$$
\left|E_{N}^{(\tau)}\right| \leqslant 4 \log ^{-2 p} N_{\tau} .
$$

$$
E_{N}=\bigcup_{\tau} E_{N}^{(\tau)}
$$

Then in the first place

$$
\begin{aligned}
\left|E_{N}\right| & \leqslant 4 t \log ^{-2 p}\left(\frac{N}{t}-1\right) \\
& \leqslant \log ^{-2} N
\end{aligned}
$$

by (18) and (20) if N is greater than a C. Also, provided $0 \epsilon_{i}^{\prime}=E_{N}$ we have

$$
\begin{aligned}
\operatorname{Max}_{n \leqslant N} \Re_{N}(\theta) & \leqslant \sum_{\tau=1}^{t} \operatorname{Max}_{n_{\tau} \leqslant N_{\tau}} \Re_{u_{\tau}}^{(\tau)}(\theta) \\
& \leqslant A t s^{1 / 2}\left(\frac{N}{t}+1\right)^{1 / 2} \log ^{n^{\prime} s} N \\
& \leqslant A t^{1 / 2} s^{1 / 2} N^{1 / 2} \log ^{1 / s} N
\end{aligned}
$$

since each $N_{r} \leqslant(N / t)+1 \leqslant N$. Hence using the values (18), (19) we have

$$
\operatorname{Max}_{n \leqslant N} \mathscr{R}_{n}(0) \leqslant A N^{1 / 2} \log ^{1 / 2} N \log \log N \varphi^{-1 / 2}(N)
$$

which proves the lemma.
It is now an easy matter to prove the theorem. The proof follows familiar lines.

We shall first prove that for almost all θ there is a $T_{0}(\theta)$ such that

$$
\operatorname{Max}_{N \leqslant 2^{T}} \Re_{N}(\theta) \leqslant A_{2} 2^{1 / 2 T} \log ^{1 / 2} 2^{T} \log \log 2^{T} \varphi^{-1 / 2}\left(2^{T}\right)
$$

for all $T \geqslant T_{0}(\theta)$ where A_{2} is the A_{2} of lemma 6. For if E_{N} is the E_{N} of lemma 6, that lemma shows that

$$
\sum_{T}\left|E_{2^{T} T}\right|
$$

is convergent. Hence for almost all θ there is a $T_{0}(\theta)$ such that

$$
\theta \epsilon \equiv E_{2^{T}} \quad \text { all } \quad\left(T \geqslant T_{0}\right) .
$$

Now put $N_{0}(0)=2^{T_{0}(\theta)}$. Then for all $N \geqslant N_{0}(\theta)$ there is a $T \geqslant T_{0}(0)$ such that $N \leqslant 2^{T} \leqslant 2 N$. But then

$$
\Re_{N}(\theta) \leqslant \operatorname{Max}_{N \leqslant \Sigma^{T}} \Re_{N}(0) \leqslant A(2 N)^{1 / 2} \cdot \log ^{1 / 2} 2 N \cdot \log \log 2 N \varphi^{-1 / 2}(N)
$$

since $\varphi(n)$ is non-decreasing, and finally

$$
\Re_{y}(\theta) \leqslant A N^{1 / 2} \log ^{1 / 2} N \log \log N \varphi^{-1 / 2}(N)
$$

for some A. This proves the theorem.
The University, Manchester.

REFERENCES

1. P. Frdös and J. F. Koкsma, "On the uniform distribution modulo 1 of sequences ($f(n, \theta)$)". Proc. Kon. Ned. Akad. v. Wetensch., 52, 851-854 (1949).
2. P. Erdös and J. F. Koksma. "On the uniform distribution modulo lof lacunary sequences". Proc. Kon. Ned. Akad. v. Wetensch., 52, 264-273 (1949).
3. A. Khintchine. "Ueber einen Satz der Wahrscheinlichkeitsrechnung". Fund. Mat., 6, 9-20 (1924).

Papers I and III of this series are to appear in the Proceedings of the Cambridge Philosophical Society and paper II in the Journal of the London Mathematical Society.

[^0]: ${ }^{1}$) This extension of the meaning of $R_{N}(\alpha, \beta: \theta)$ does not affect the definition of $\Re_{N}(\theta)$ as

 $$
 R_{N}(\alpha, \beta: \theta)=R_{N}(\{\alpha\},\{\beta\}: \theta)=-R_{N}(\{\beta\},\{\alpha\}: \theta)
 $$

 and at least one of the last two expressions has a meaning in the original sense.

[^1]: ${ }^{1}$) The symbol $(x, y, \ldots, t)_{ \pm}$means that the numbers x, y, \ldots, t are unequal in pairs.

