MATHEMATICS

THE ASYMPTOTIC EXPANSION OF THE CONFLUENT
HYPERGEOMETRIC FUNCTION M, , (2 w)

BY

H. A. LAUWERIER

(Communicated by Prof. J. G. vaN DER CORPUT at the meeting of December 17, 1949)

§ 1. Elsewhere ) I have found that M, , (2 w) is for large positive
o asymptotic equal to

21 37 e g1 @'ls {I" (1/3) cos (w/2—1g) & > a, ™2 +
0

+ 2.3 I' (/5) cos (w/2+ 1/g) D b, w23},

ag=1; by=—"pe ; a3=—g00 5 by="/74 o+ /13— /22— 3" /g25-

The object of this paper is to deduce a numerical upper bound of
the remainder in this formula.

§ 2. We start with the fundamental formula
Mo (2w)= (2w) 1271 j:e‘“ (z—1[z4 1)*2 (22—1) "= dz.
We put arg (: —1)=0 and arg (z+ 1)= 0 for z > 1. We may write
(200)=" M ops. o (200) = — 1/ Re {exp (wmif2) _F° o9 (1—22)—*h dz}.

Here a denotes an arbitrary number > 1 and the path of integration
lies above the real axis; ¢ (2) =2+ 1/,In 1—2/14 2.

According to the method of steepest descent we define the path of
integration by Im ¢ (2) = 0, thus if 2=z + 9y,

=x2=2ycotg2y—}- 1— g2 0 <y <m2
y=20 0<z<l.
Therefore the contour consists of a segment § of the real axis from

z=1 to = 0 and moreover of a curve L in the second quadrant with
asymptote y = /2 and with the tangent y = x tg 27/3 at the origin. The

1) The use of confluent hypergeometric functions in mathematical physics
and the solution of an eigenvalue problem. Appl. Sci. Res. (A) 1950.
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function ¢ (z) increases on S monotonously from — oo to 0 and decreases
on L monotonously from 0 to — oc.

By the transformation (= {— ¢ (2)}":, where arg{ =0 for z on §
and arg (= 2n/3 for z on L, we find for n (2 w)~"* M, o (2 w) the
expression

3] ar 00 exp 27i[3 d-
wni/2 el _ Pl e Y
Ree U € @Zjdz (1= 22y f € d:/dz(l—zz)‘/z:'
0 0

By applying BURMANN’S theorem we obtain

n—1
T (2w)—’/: ﬂIw/Z,O (2 w) = Re ewm’/:} { Z my (Ak_ Bk) + (Cn—Dn)},
0
where

Ak: J‘ et Ck dé-: 1/3 r (k_+_ 1/3) w—(k+1/3);
0
00 exp 27if3

(1) B/.'ZJ- e T R dl = 1/3 I'k+ 1/3) w— k1Bl G2k 23 i
0

(%)
m=1/27i [ (1—8) 7" (—t—"/y In 1—¢/14-8)— *+13 g,
oc exp 27if3

0

\o.=Terord ; D=]" RO

o dt )
R, (&)= 1)2m f (1=8) s (—t—"y In T—t/1+tyB{(—t—1/, In 1—t/148)'h—C}’
The contourencloses all the valuesof ¢ for which (——1/,In 1—#/14-#)"=¢.

It is easily seen that m, = 0 for k odd so that in virtue of the vanishing

of the factor sin (k+ 1/3) « for £ = 2 (mod 3) we find

2" w'ls cos (w2 —1/g) 7 [n—1/6]

M0 (2w) = :J my, I' (2p 4 1/3) 0P 4

3

2% 'l cos (w24 /) 7 ["_T‘—"“”

+ 32z < Mg, I (2p+ 14 233) 0214 U,

where the remainder U, is equal to
(3) U, = (20)Jz {C, cos (wm|2)— Re (D, e i)},

In the paper mentioned in note !), in which I have derived the same
asymptotic expansion, I have found

my= 3" ; my=—11.3"7/280 ; mg=— 13.3"2/400;
Mmyg= (}7+ Yo+ /1 — 32— > [25) 3""2/40.

§3. In this section I deduce for k& even an upper bound for the
absolute value of my, viz.

6

S 3.9 s
{4) [y < s(2fm) 3 | 06447

13
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where
if k=0 or 4 (mod 6)

s=1
§=2 if k=2 (mod 6).

In (2) T choose as path of integration two contours resp. around
+ 1 and — 1 and beginning and also ending resp. at 4+ oo and — oco.
In this manner I obtain

J-”')—<k+1/:«n

my= (1/z) Re (exp (k4 1/3) mi— 1) T(tz— )=k (047 dt,

where 0 =¢+ 1/,In{—1/t+ 1, and therefore we obtain

% . 22\ —(k+1/6)
|my| < sfm [ (2—1)"" <02+ Zz) dt.

1
By using
024 (n2/4) = (n?/4) for 1<t<a
624 (n%/4) = (t—b)2 4 (n*/4) for t> a,

where a is an arbitrary number > %/, and b=1/,Ina—1/a}1, we find

|my| < s/n (2[n)k+13 {In (a + Va®>—1)+

O Pt )=+ (3 ¢ (afm) b (8)2) (52— 1)}~ ),
where
¢=2Jn (a—b) = 2Jn (a—yIn a+ 1Ja—1).
Here

u?+ (4/n) bu— 4/ (b2—1) > w2
In fact we have to prove the inequality
2b(@a—b)>b—1,
which is equivalent to
32—2ab—1 <0,
that is

a+ VaT+__3.

b < 3 i

this inequality follows from

a+t Vat+ 3—3/,In(a+ 1/a—1)> 0

which is obvious since the left hand side represents a monotonously
increasing function which is positive at a = 5/,.
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Consequently the integral occurring in (5) is less than

j.‘ou—l (u2+ 1)—(k+ll6) du = 1/2 J?o ”—(k+7/6)/1 l/’l) dv._llzz J' v—((k+7l6)+7) dv
c 1+c? 01+¢c

o]

=1/2Z : -

(1+62)(k+7/6)+j ((k+ 1/6)"‘_7) é

. 1 _ 3
= k1 (1) *+1/6)+i — (k4 1) ¢® (1 + c2)k—5/6 °
0

We define a by the equation ¢= 1. In that case a < 1,94 and
In (@ + Ja® — 1) < 1,28. This establishes the proof of formula (4).

§ 4. The object of the following sections is to deduce an upper bound
for the expression R, ({) occurring in (2). We choose the same path of
integration as in the preceding section, namely two contours resp. around
+ 1 and — 1, and beginning and also ending resp. at 4+ co and — oo.
Thus we find for 2z R, ({) the sum

7 exp (n+1/3) dt + J‘ exp — (n-+1/3) ne dt
f (82—1)s (64 (23/2) )73 {(0 4 (£/2)) /s — Cemil3} (62— 1) (0 — (7i[2))3 { (6 — (2i[2))'h —Cemil3}

dt dt
_! @ 1) (0+ (i/2)) B { (4 + (2d2)) = £} f (@1 (1= (24]2)7"B { (1—(=e/2) "L}

where 0 =¢+ /,In (¢—1/t+1).
This is in absolute value at most

1
(@ —1)h [0+ (23/2) "B
1

exp (n+1/3) at 1
(0 (2if2))h—Lemi3 ~ (94 (23/2))'h —L

1

exp —(n-+1/3)x¢
+ [ Gt = e
1

(9 =(73/2))h—Le—mi3 (0—(M/2))‘/-

gydt

Hence

T dt
® |[ROI= | (@) (- (22| (94 (2]2) Ve —2 €] [ (4 1 (25/2)) =2 |”
1

where
T = (024 (n2/4))/s+ 8" |¢| if n= 4 (mod 6)
T = (62 + (n2[4))"s if »= 0 (mod 6).
We consider only values of n which are either = 0 (mod 6) or

= 4 (mod 6).
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§ 5. In this section I shall prove the inequality

(M) 16+ @if2)h—ce| |0+ @ij2)h—t| = ZEL if argr=o,
where

= (2+ V/3) (2/n)h = 3:2105;
and

(8) | (04 (m2/2))'"—¢ ™3| | (0+ (mi[2))"—L | = |0+ (mi/2) [+ if arg &= (27/3).

For ¢t = 1 the function 0 runs though all real values, so that the point
(0 + (m2/2)'= X + ¢ Y lies on the curve F defined by

Im(X+1YP=n/2 ie. 3X2Y—Y3=gm/2

This curve has the symmetry axis Y= X 3=+ and two asymptotes
Y =0 and Y= X 3. Now we distinguish two cases.

1. Put arg{=0. Choosing a new rectangular coordinate system
the z-axis of which coincides with the symmetry axis of F, we find for
the equation of F

2 — 3 xy? = n[2
that is
xr= (n/2)'/'}. y= 3—‘/,( /2 )‘/, A= (ABB—1) L,
With respect to this system the coordinates of the point (e™* are

(/5 ¢ 1/§, 1/,¢)andthoseof fare (1/, ¢ l/§, —1/,¢). By putting {=2.3"" (7/2)" s,
we obtain

|64 (m8)2))'h—CemB2 | (0 + (ni)2))h—C 2=
— IR (022 () + 62 (A—pr)? (B + Au2—1) + (B—Awi—1)%).

The substitution
v=42A—pn) w=421(1—u)?
transforms the right hand side into

(15472}.)2I (vz—vw_{_ w2 —ov—w-+ 1).

In virtue of A = 1 and 4 = 0 we obtain v? = 4 w = 0 and v (v—w) = 0.
In the next section we shall prove that these inequalities imply

9 v?
JF (£ vw)hye

(9) v—vw—{—wz-—v—w—}—l_{j(v_

where f= 2+ 4.37»= 4.309.
Hence the left hand side of (7)is at most equal to (7/2)"» (1 + h,0)?
where h; has the above indicated value.
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2. Put arg{= 2n/3. The square of the left hand side of (8) is equal to

(X34 Y242 (0| X+ |¢B) (X2+ Y2+ 0| X —[C| YB3+ [CP) =

= (X4 Y2+ | ] (X2 4 Y2+ |C[) (X3 —Y) 3+

+ 2P @X2—XY 3+ Y2+ L[t = (X2+ Y2,

since each point of F satisfies the inequality ¥ < X |/3. This proves
inequality (8).

§ 6. In this section the inequality (9) will be proved. We distinguish
four cases, namely

v=0;209=0w=4;3.0=0,0w=< (2—)/3)2

v=0, 2— )3 w< 4.

The left hand side of (9) is = 3/, and the right hand side of (9) is < 9/,.
Writing v=w-+ 6 6 = 0 we have

REw

R—wwtw—v—wt+ 1)ri={(w—12+é(w—1)+ & =w—1;

3v < _3(w+3) 3 w's
flo—w)+(4ow)ls = fo+ (4w?)h = 2%

(9) follows from
w—1 = 3.2~ wh,
which is obvious.
3. For 0 < w =< (2—}/3)? we have
@P—vwtwr—v—w+ 1)r={v—yw—1)2+ 3, (1 —w)F} =
= (/3/2) 1 —w) Z 3 (2—V3);
and, writing v=2¢cw' ¢ =1

o o8 88 6
flo—w)+(dvw)ls ™ f(2e—w'h)+26h = §(2:—24}/3)+2

(9) follows from

2:—2(2— /3 (2+ V3
ft 2(6_(;_)}V(3)H/)2;,+V§_

4. Writing again v= 2 ¢ w':, we have
v—ow+ w—v—w+ 1= (w—w'4 1)2+ 2 (e—1) w'r (—w+ 2w+ 2ew'—1)
= (w—w':+ 1)
As before (9) follows from

6e¢
- ’/: >_A_~_______
w w +1:f(2€—wl/’)+2,

which is equivalent to
2—w'?) (f w—f w'—2 w' + [—2) 4+ 2 (e—1) (f w—f w'* 4 f—3) = 0.
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The last inequality is obvious since the second term is = 0 already
for f > 4 and the first term vanishes for the first time in the w interval
for f=2+4 4.3 It is impossible to find a better constant in (9), since
the combination v= — 2+ 2})/3, w=4—2})3 for which »*=4w
transforms (9) into an equality.

§ 7. The results of the last sections will be applied to the remainders
R, and U, occurring in (2) and (3). Substituting (7) and (8) in (6) we
obtain

| R, ()] < (2)2) (14 52)-(1m) T (2— 1)~ (62 4 (n2]4)) 70 T dt

1
if arg{=0;
| R, (8) | < (/) (Um) (82— 1)~k (02 (m2]4))—+29 T dt
1
if arg ¢ = (2x/3).
From § 3 it follows

3.2—*/6 }

(10)  1fm] (2 — 1)~ (624 (a2/)~0 dt < (2fm)¥e+2 {064 4 220

valid for all positive integer values of k.
Denoting the left hand side of (10) by e, we get

[ R, (0)] = (2]m)" (1 4 2yL) (L4 hyl) e, (arg &= 0; n = 4 (mod 6)),

|Bn (O)] = (2/n)" (1 4 hy8) €y (arg { = 0; n = 0 (mod 6));

| B, (0)| = (2/m)" (14 hol) €444 (arg £ = 27/3; n = 4 (mod 6));
| B, (0)] = (2/n)" €44 (arg £ = 27/3; » = 0 (mod 6)),
where

hy= (24 V3) (2/n)»= 321056 and hy= /3 (2/n)" = 1-4900.
Hence we find for U, the upper bound

U] S (2w {[cos @nf2| T e (14 hd) (14 ) £ -0+
+ [ e (L4 hal) £ L ey ).
if n = 4 (mod 6) and
|Un| < (27 w'r[n') {| cos wm/2] ?’e—"’" 1+ ki 8)C"dC e, +
0

+ :‘)‘Qe—wt’ & dé_'enﬂ}’

if » =0 (mod 6).
Or finally

21/. wlll )
(1la) |U,|= Sah {| cos /2| (¥o+ c171+ Cave) €nla+ (Yot Cs¥1) €nsals
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if » = 4 (mod 6), and

2'ls w'ls
11b) U = _3,?/,_ {| cos wm/2| (yo+ €41) €a—1+ Yo n+1}s

if n = 0 (mod 6), where

_nt+i+1

j41 .

Vi= 1'1("_4‘:};4;) w $ (7 =0,1, 2),

¢y=2 (14 V3) (2/n)'s = 4T005; c,= (3+ 2 V/3) (2/n)": = 4'7837;

c= V3 (2/n): = 14900; ¢,= (2+ 3) (2/m)" = 3-2105.
To show the practible applicability of (4) and (11) a numerical example

will be given:
M,, (8)= 14494 — 0-0136 — 00013 + U,, = 14345 + Uy,
(11a) gives
| Uso| = 0°0009

Further we have

mg = — 0047 and e; = 0°184.

Koninklijke-Shell laboratorium,
Amsterdam



