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§ 1. Elsewhere 1) I have found that M 01/2.0 (2 w) is for large positive 
w asymptotic equal to 

21/• 3-1/• n-1 wil. {r (1/3) cos (W/2_1/6) n ~>l,p w-2p + 
o 

+ 2.31/• r (2/3) cos (w/2 + 1/6) 2: bp w-2p-'I.}. 
o 

Here 

"0 = 1 bo = - 11/280 . ,,- 13/ . b - 4/ + 1/ + 2/ 7/ 377/ a , al - - 900' 1 - 7 9 13 - 32 - 625' 

The object of this paper is to deduce a numerical upper bound of 
the remainder in th is formula. 

§ 2. We start with the fundamental formula 

(1 +) 

M 01/2.0 (2w) = (2w)'/. 1/2ni f e01Z (z-l/z+ 1)0112 (z2_1)-1/, dz. 
-00 

We put arg (z - 1) = 0 and arg (z + 1) = 0 for z> 1. We may write 

-00 

(2W)_1/. M 01/2.0 (2w) = - l/n Re {exp (wni/2) J e""l'(z) (I_Z2)-1/. dz}. 
a 

Here a denotes an arbitrary nu mb er > 1 and the path of integration 
lies above the real axis; rp (z)= z+ 1/2 In l-z/l+z. 

According to the method of steepest descent we de fine the path of 
integration by Im rp (z) = 0, th us if z = x + iy, 

{ 
X2 = 2y cotg 2y + I _ y2 

y=O 

0< y < n/2 

O<x<1. 

Therefore the contour consists of a segment S of the real axis from 
x = I to x = 0 and moreover of a curve L in the second quadrant with 
asymptote y = nj2 and with the tangent y = x tg 2n/3 at the origin. The 

1) The use of confluent hypergeometric functions in mathematical physics 
and the solution of an eigenvalue problem. App!. Sci. RAS . (A) 1950. 
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function rp (z) increases on S monotonously from - 00 to 0 and decreases 
on L monotonously from 0 to - 00. 

By the transformation C = {- rp (z)}'/', where arg C = 0 for z on S 
and arg C = 2n/3 for z on L, we find for n (2 w)-'/, M W / 2• 0 (2 w) the 
expression 

00 00 exp 2:r 'j/ 3 

R w"i/2 {f -w~' d:; f e-w!;' e e ' e d:;/dz( 1 -= Z2)' /, -
o 0 

By appIying BURl\'IANN'S theorem we obtain 

n-l 

n (2w)-'/· M W / 2• 0 (2w) = Re eW7r;/~ {.L mi.' (Ak-Bk ) + (On-Dn)}, 
o 

where 

( 1) 

00 

A i.' = fe-wc' Ck de = 1/3 r (k + 1/3) w - (i.' t 1/ 31 ; 
o 

00 exp 2.."11/3 
Bi.' = f e-w:' Ci.' di:, = 1/3 r (k + 1/3) w-(/, t 1/:)1"; e(2i.' t 2/31"i; 

u 

~ 
00 00 eXil :!.:t i/:3 o = fe-wc' r il R ( ,~) d '~ D = f -w:;" ~"R ( ,~) d '~' n !., n ~ ~ J/. e 1.:0, n ~ ~, 
o () 

~RII(C)= lj2ni f (1-t2)'/'T~t-I/21n-l-=-t/l+t~,t/:){(-i-=-1/21n l-t/l+t)'/.-Ç); 

The contourencloses all the values of t for which (-t-I / 2 In l-t/l+t)'/'=i:,. 
It is easily seen that m k = 0 for k odd so that in virtue of the vanishing 
of the factor sin (k + 1/3) n for k _ 2 (mod 3) we find 

2'/ ' / ( / 9 11 ) [II-I /Ul M (.)) - • w • cos (J) - - 6;r", r (.~ + 1/) -~p + 
w!~. 0 - w - 3'/, Cl """"' rnup -]J 3 W .. u 

where the remainder U" is equal to 

(3) U" = (2 ro)'/'/n {ell cos (wnj2) - Re (Dil eW";/~)}. 

In the paper mentioned in note 1), in which I have derived the same 
asymptotic expansion, I have found 

'1110 = 3'/' m6 = - 13.3'/'/400; 

_ (,1/ + 1/ + 2/ 7/ 377/) 3"/'/40 mlO - 7 9 13 - 32 - 625 . . 

§ 3. In this section I deduce for keven an upper bound for the 
absolute value of mk, viz. 

1:+4 f 3 ?_k:l} 
(4) Imk l <s(2/n) 3 lO'64+"--'; +I - , 

13 



where 
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s = 1 if k = 0 or 4 (mod 6) 

s = 2 if k - 2 (mod 6). 

In (2) I choose as path of integration two contours resp. around 
+ 1 and - 1 and beginning and also ending resp. at + 00 and - 00. 

In this manner I 0 btain 

• 00 1 ( 1li)-1k+l/3) 
mk = (l/n) Re (exp (k + 1/3) nt-I) I (t2 -1)-/' 0 + 2 dt, 

where 0 = t + 1/2ln t-l/t+ 1, and therefore we obtain 

By using 

02 + (n2/4) > (n2/4) for 1 < t < a 

02 + (n2/4) > (t-b)2 + (n2/4) for t> a, 

where a is an arbitrary number > 6/4 and b = 1/2 In a-l/a+l, we find 

( 5) 

~ I m k I < s/n (2/n)k+l/3 {In (a + Va2 1) + 
~ + f(U2+ 1)-(k+l/6) {u2+ (4/n) bu-(4/n2) (b2_1)}-I/. du}, 

where 

c = 2/n (a-b) = 2/n (a- 1/ 2 In a + I/a-I). 

Here 

In fact we have to prove the inequality 

2 b (a - b) > b2 - 1, 

which is equivalent to 

3 b2 - 2 ah - 1 < 0, 

that is 

b<a+Va2+3. 
3 ' 

this inequality follows from 

which is obvious since the left hand si de represents a monotonously 
increasing function which is positive at a = 6/4. 
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Consequently the integral occurring in (5) is Iess than 

00 00 00 00 

J U-I (u2+ l)-(k+I/6) du = 1/
2 

f v-(k+7/6)/I-(I/v)dv=I/2L f V-((k+7/6)+i) dv 
c l+c' 01+c· 

00 

=I/2}; (l+C 2 )(k +7/6l+\((k+lj6)+j):::;: 
o 

We define a by the equation c = 1. In that case a < 1,94 and 
In (a + Va2 1) < 1,28. This establishes the proof of formula (4). 

§ 4. The object of the following sections is to deduce an upper bound 
for the expression R10 (C) occurring in (2). We choose the same path of 
integration as in the preceding section, namely two con tours resp. around 
+ 1 and - I, and beginning and also ending resp. at + 00 and - 00. 

Thus we find for 2 n R10 (C) the sum 

00 00 

f exp (n+ Ij3) dt f exp - (n-t-Ij3) ni dt 
(t2_1 )'/. (Ij +(:rij2) )10/3 W + (nij2))'/'_Ce" i/3 } + (t2 - 1)'/. (0 - (:ri j2))11/3 {(O - (nij2))'/. _ C&,'/3} 

I 1 

00 00 

f dt f dt 
- (t2 -I)'/. (0 + (:rij2))n/3 {( O + (nij2))' /. - Cl - (t2-I)'/. (O_(:rij2))n/3 W-(nij2))'/.-C} 

I 1 

where () = t + 1/2 In (t-I/t+ 1). 
This is in absolute value at most 

00 

f 1 I exp(n+lj3)ni 1 I 
(t2-I)'/' 1 0 + (:rij2) 110/3 (0 + (:ri/2))'/. -Ce"i/3 - (0 + (:rij2))'/. _ C dt + 

1 

00 

f 1 I exp - (n+ Ij3):ri _ 1 I dt + (t2-I)'/' I Ii-(:rij2) I1O/3 (O-(nij2))'/.-Ce "./3 (O-(nij2))'/.-C • 
I 

Hence 

00 

(6) IRn(')1 < (I/n) f (t2-1),/.(02+(:r2j4))n/61(0+(~j~)'/.-~e"i/311(0+(nij2))'/.-CI' 
1 

where 

T = (()2 + (n2 /4))' /. + 3'/'1' I if n = 4 (mod 6) 

T= (()2+ (n2/4))'/' if n=O(mod6). 

We consider only values of n which are either = 0 (mod 6) or 
= 4 (mod 6). 
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§ 5. In this section I shall prove the inequality 

(7) 1(0+ (ni/2))'/'-1;e" i/3 11(0+ (ni/2))'/'-1;1 > i121:/~ if arg1;= 0, 

where 

hl = (2 + Va) (2/n)'I. = 3'2105; 

and 

(8) 1(0 + (ni/2))'/--1; e"i/3 11 (0+ (ni/2))'/'-1; I > 10+ (ni/2) l'I. if arg 1;= (2n/3). 

For t ~ 1 the function 0 runs though all real values, so that the point 
(0 + (ni/2)'I. = X + i Y lies on the curve F defined by 

Im (X + i y)3 = n/2 i.e. 3 X2y - y3 = n/2. 

This curve has the symmetry axis Y = X 3-'1. and two asymptotes 
Y = 0 and Y = X 3'1 •. Now we distinguish two cases. 

1. Put arg 1; = O. Choosing a new rectangular coordinate system 
the x-axis of which coincides with the symmetry axis of F, we find for 
the equation of F 

x3 - 3 xy2 = n/2 

that is 

x = (n/2)'/. À. y = 3-'1. (n/2)'/. )._'1. (À.3-1) I,. 

With respect to th is system the coordinates of the point 1; e"i/3 are 

(1/21; Va, 1/2 1;)and thoseoft;are (1/2 C va, _1/20. By putting 1;=2.3-'1. (n/2)'/.,u, 
we obtain 

1(0 + (ni)2)) '1._ C e"i/3 121 (0 + (ni/2) )'/.- C i2 = 

= (:r~~~'I. {9À.2 (À.-,u)4+ 6À. (À.-,u)2 (À.3+ À.,u2-1) + (À.3_).,u2_1)2}. 

The substitution 

v = 4 À.2 (À. - ,u) w = 4 À. (À. - ,u)2 

transforms the right hand side into 

(:rf2)'I. ( 2 2 ) 
~9~2 v - vw + w - v - w + 1 • 

In virtue of À. > 1 and ,u > 0 we obtain v2 > 4 w > 0 and v (v-w) > O. 
In the next section we shall prove th at these inequalities imply 

(9) 2 + 2 + 1 > 9 v
2 

V -vw W -v-w = {/(v-w--:-)--,-+-:-(-:-4-vw----:)-,-;-'I.p' 

where t = 2 + 4.3-'1. = 4.309. 
Hence the left hand side of (7) is at most equal to {n/2)'/. (I + h l 1;)-l 

where hl has the above indicated value. 
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2. Put arg ,= 271',/3. The square of the left hand side of (8) is equal to 

(X2+ P+ 21'1 X + 1'12) (X2+ P+ 1'1 X -1'1 Yy'3 + 1'12) = 

= (X2 + P)2 + I' I (X2 + P + I' 12) (X V3 - Y) y'3 + 

+21'12(2X2-XYy'3+ P)+1'14> (X2+ P)2, 

since each point of F satisfies the inequality Y ~ X Vi This proves 
inequality (8). 

§ 6. In this section the inequality (9) will he proved. We distinguish 
four cases, namely 

1. v <0 ; 2. v > 0 w > 4 ; 3. v > 0 , 0 < w < (2 - V3)2 
4. v > 0, (2 - V3)2 < w < 4. 
L The left hand side of (9) is ~ 3/4 and the right hand side of (9) is ~ 9/16" 
2. Writing v = w + <5 <5 > 0 we have 

(v2-vw+ w2-v-w+ 1)'/.= {(w-l)2+ <5 (w-l)+ <52}'/. ~ w-l ; 

3v < ~w+Ó) ~ 3w'/. 
f(v-w)+(4vw)'/. = fd+(4w 2 )'/. - 2'1. 

(9) follows from 

1.0 - 1 > 3.2-'1. w'/., 

which is ohvious. 

3. For 0 ~ w < (2 - V3)2 we have 

(v2 - vw + w2 - V - W + 1)'/, = {(v - 1/2 W _1/2)2 + 3h (1- w)2}'/. ~ 

> (V3/2) (1- w) > 3 (2 - y'3); 

and, writing v = 2 e 1.0'/. e > 1 

-;-;-_--:-3--:-v--:-:- _~ __ ~ = _ ___ !l_E_ ___~ < 6_ E-;:::--_ 
f(v-w)+(4vw)'/. f(2E-w'/,)+2E'/. = f(2E-2+V3)+2 

(9) follows from 

I >{2e-2(2-1/3)}(2+ V3) > 2+ y'3. 
2e-(2- V3) 

4. Writing again v = 2 e w'/., we have 

v2-vw+ w2-v-w+ 1 = (w-w'/,+ 1)2 + 2 (e-l) w'/. (-w+ 2w'/.+ 2ew'/'-I) 

> (w-w'/. + 1)2. 

As hefore (9) follows from 

'I + > 6E 
W-W' 1 = f(2E-W'/,)+2' 

which is equivalent to 

(2-w'/,) (f w-I w'/'-2 w'/. + 1-2) + 2 (e-l) (f w-I w'l. + 1-3) ~ o. 
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The last inequality is obvious sin ce the second term is > 0 already 
for I> 4 and the first term vanishes for the fust time in the winterval 
for 1= 2+ 4.3-'/,. It is impossible to find a better constant in (9), since 
the combination v = - 2 + 2 VS, w = 4 - 2 V3 for which v2 = 4 w 
transforms (9) into an equality. 

§ 7. The results of the last sections will be applied to the remainders 
R" and U" occurring in (2) and (3). Substituting (7) and (8) in (6) we 
obtain 

if argC= 0; 
00 

IR" (Ç) I < (2fn)'I •• (lfn)f (t2 -1)-'I. (02 + (n2f4) )-(n+2/6) T dt 
I 

if arg C = (2nf3). 

From § 3 it follows 

(10) Ifn r (t2 - 1)-'/. (02 + (n2f4)-(kI6) dt < (2fn)k/3+! { 0.64 + 3.2;k
I
6} 

valid for all positive integer values of k. 
Denoting the left hand side of (10) by ek we get 

IR" (C) I ~ (2fn)'I. (1 + hle) (1 + h2C) en- l 

IR" (C) I ~ (2fn)'/. (1 + hle) en- l 

IR" (C)I ~ (2fn)'I. (1 + h2C) en +l 

IR" (C) I ~ (2fn)'I. en+! 

wh ere 

(arg C = 0; n = 4 (mod 6)), 

(arg C = 0; n - 0 (mod 6)); 

(arg C= 2nJ3; n = 4 (mod 6)); 

(arg C= 2nf3; n = 0 (mod 6)), 

hl = (2 + V3) (2fn)'I. = 3·2105 and h2 = V3 (2fn)'/. = 1·4900. 

Hence we find for Un the upper bound 

00 

I Uni ~ (2'1, w"'fn"·) {I cos wnf21 J e---<UC' (1 + hle) (I + h2e) cn dC·en- 1 + 
o 

00 

+ J e---<UC' (1 + h2e) cn dC· en+d. 
o 

if n = 4 (mod 6) and 

if n == 0 (mod 6). 
Or finally 

I I 2'I'(JJ'/. '} 
(lla.) U" ~ h'I. {I cos wnJ21 (Yo + CIYl + C2Î'2) en- l + (Yo + C3YI) en+! , 



if n = 4 (mod 6), and 

llb) 

if n - 0 (mod 6), where 

(
n+ j + 1) _n+i+l 

'Yi=r -
3
- W 3 
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(j = 0, 1,2), 

Cl = 2 (1 + V3) (2/71:)'1. = 4-7005; Cz = (3 + 2 V3) (2/71:)'/. = 4-7837; 

c3 = V3 (2/71:)' /.= 1-4900; c4 = (2+ V3) (2/71:)'/.= 3-2105_ 

To show the practible applicahility of (4) and (11) a numerical example 
will he gi ven: 

M._o (8) = 1-4494 - 0-0136 - 0-0013 + UlO = 1-4345 + UlO' 

(lla) gives 

Further we have 

1 UlO 1 < 0-0009 

m6 = - 0-047 and e6 = 0-184_ 

Koninklijke-Shell laboratorium, 
Amsterdam 


