MATHEMATICS

THE ASYMPTOTIC EXPANSION OF THE CONFLUENT HYPERGEOMETRIC FUNCTION $M_{\omega / 2,0}(2 \omega)$

BY

H. A. LAUWERIER

(Communicated by Prof. J. G. van der Corput at the meeting of December 17, 1949)
§ 1. Elsewhere ${ }^{1}$) I have found that $M_{\omega / 2,0}(2 \omega)$ is for large positive ω asymptotic equal to

$$
\begin{aligned}
& 2^{1 / 3} 3^{-1 / 6} \pi^{-1} \omega^{1 / 0}\left\{\Gamma(1 / 3) \cos (\omega / 2-1 / 6) \pi \sum_{0} a_{p} \omega^{-2 p}+\right. \\
&\left.+2.3^{1 / 3} \Gamma(2 / 3) \cos (\omega / 2+1 / 6) \sum_{0} b_{p} \omega^{-2 p-4 / 3}\right\}
\end{aligned}
$$

Here
$a_{0}=1 ; b_{0}=-{ }^{11} / 280 ; a_{1}=-{ }^{13} / 900 ; \quad b_{1}={ }^{4} / 7+1 / 9+{ }^{2} / 13-{ }^{7} / 32-377 / 625$.
The object of this paper is to deduce a numerical upper bound of the remainder in this formula.
§ 2. We start with the fundamental formula

$$
M_{\omega / 2,0}(2 \omega)=(2 \omega)^{1 / 2} 1 / 2 \pi i \int_{-\infty}^{\left(1^{+}\right)} e^{\omega z}(z-1 / z+1)^{\omega / 2}\left(z^{2}-1\right)^{-1 / 2} d z .
$$

We put $\arg (z-1)=0$ and $\arg (z+1)=0$ for $z>1$. We may write

$$
(2 \omega)^{-1 / 2} M_{\omega / 2.0}(2 \omega)=-1 / \pi R e\left\{\exp (\omega \pi i / 2) \int_{a}^{-\infty} e^{\omega q(z)}\left(1-z^{2}\right)^{-1 / 2} d z\right\}
$$

Here a denotes an arbitrary number >1 and the path of integration lies above the real axis; $\varphi(z)=z+1 / 2 \ln 1-z / 1+z$.

According to the method of steepest descent we define the path of integration by $\operatorname{Im} \varphi(z)=0$, thus if $z=x+i y$,

$$
\begin{cases}x^{2}=2 y \operatorname{cotg} 2 y+1-y^{2} & 0<y<\pi / 2 \\ y=0 & 0<x<1\end{cases}
$$

Therefore the contour consists of a segment S of the real axis from $x=1$ to $x=0$ and moreover of a curve L in the second quadrant with asymptote $y=\pi / 2$ and with the tangent $y=x \operatorname{tg} 2 \pi / 3$ at the origin. The

[^0]function $\varphi(z)$ increases on S monotonously from $-\infty$ to 0 and decreases on L monotonously from 0 to $-\infty$.

By the transformation $\zeta=\{-\varphi(z)\}^{1 / 3}$, where $\arg \zeta=0$ for z on S and $\arg \zeta=2 \pi / 3$ for z on L, we find for $\pi(2 \omega)^{-1 / 2} M_{\omega / 2,0}(2 \omega)$ the expression

$$
R e e^{\omega \pi i / 2}\left\{\int_{0}^{\infty} e^{-\omega 5^{t^{3}}} \frac{d \zeta}{d \zeta / d z\left(1-z^{2}\right)^{1 / 3}}-\int_{0}^{\infty \exp 2 \pi i / 3} e^{-\omega \zeta^{3}} \frac{d \xi}{d \zeta / d z\left(1-z^{2}\right)^{1 / 2}}\right\} .
$$

By applying Burmann's theorem we obtain

$$
\pi(2 \omega)^{-1 / 2} M_{\omega / 2,0}(2 \omega)=\operatorname{Re} e^{\omega \pi i / 2}\left\{\sum_{0}^{n-1} m_{k}\left(A_{k}-B_{k}\right)+\left(C_{n}-D_{n}\right)\right\},
$$

where

$$
\begin{align*}
& \text { (1) }\left\{\begin{array}{l}
A_{k}=\int_{0}^{\infty} e^{-\omega 5^{3}} \zeta^{k} d \zeta=1 / 3 \Gamma(k+1 / 3) \omega^{-(k+1 / 3)} ; \\
B_{k}=\int_{0}^{\infty} \exp 2 \pi i / 3 e^{-\omega^{t s}} \zeta^{-k} d \zeta=1 / 3 \Gamma(k+1 / 3) \omega^{-(i+1 / 3) \pi i} e^{(2 k+2 / 3) \pi i} ; \\
m_{k}=1 / 2 \pi i \int^{\left(0^{+}\right)}\left(1-t^{2}\right)^{-1 / 2}(-t-1 / 2 \ln 1-t / 1+t)^{-(k+1 / 3)} d t ;
\end{array}\right. \\
& \left\{C_{n}=\int_{0}^{\infty} e^{-\omega \zeta^{s}} \zeta^{n} R_{n}(\zeta) d \zeta \quad ; \quad D_{n}=\int_{0}^{\infty \exp p a i / 3} e^{-\omega \xi^{5}} \zeta^{n} R_{n}(\zeta) d \zeta ;\right. \tag{2}\\
& \left\{R_{n}(\zeta)=1 / 2 \pi i \int \frac{d t}{\left.\left(1-t^{2}\right)^{1 / 2}-t-1 / 2 \ln 1-t / 1+t\right)^{n / 3}\left\{(-t-1 / 2 \ln 1-t / 1+t)^{1 / 3}-\zeta\right\}} ;\right.
\end{align*}
$$

The contour encloses all the values of t for which $(-t-1 / 2 \ln 1-t / 1+t)^{1 / 3}=\zeta$. It is easily seen that $m_{k}=0$ for k odd so that in virtue of the vanishing of the factor $\sin (k+1 / 3) \pi$ for $k \equiv 2(\bmod 3)$ we find

$$
\begin{aligned}
& M_{\omega / 2,0}(2 \omega)=\frac{2^{1 / 2}\left(\omega^{1 / 6} \cos (\omega / 2-1 / 6) \pi\right.}{3^{1 / 3} \pi} \sum_{0}^{[n-1 / 6]} m_{6 p} \Gamma\left(2 p+{ }^{1 / 3}\right) \omega^{-2 p}+ \\
& +\frac{2^{1 / 2} \omega-1^{1 / 6} \cos (\omega / 2+1 / 6) \cdot \pi}{3^{1 / 2 \pi}} \sum_{0}^{[u-5 / 6]} m_{6 j+4} \Gamma(2 p+1+2 / 3) \omega^{-2 p-1}+U_{n},
\end{aligned}
$$

where the remainder U_{n} is equal to

$$
\begin{equation*}
U_{u}=(2 m)^{1 / 2} / \pi\left\{C_{u} \cos (\omega \pi / 2)-\operatorname{Re}\left(D_{n} e^{\omega \pi i / 2}\right)\right\} . \tag{3}
\end{equation*}
$$

In the paper mentioned in note ${ }^{1}$), in which I have derived the same asymptotic expansion, I have found

$$
\begin{aligned}
& m_{0}=3^{1 / 3} ; m_{4}=-11.3^{5 / 3} / 280 ; \quad m_{6}=-13.3^{1 / 9} / 400 \\
& m_{10}=\left({ }^{4} / 7+{ }^{1 / 9}+{ }^{2} / 13-{ }^{7} / 32-{ }^{377} / 625\right) 3^{11 / 3} / 40
\end{aligned}
$$

$\S 3$. In this section I deduce for k even an upper bound for the absolute value of m_{k}, viz.

$$
\begin{equation*}
\left|m_{k}\right|<s(2 / \pi)^{k+4}\left\{0.64+\frac{3.2^{-k+1}}{k+1}\right\} \tag{4}
\end{equation*}
$$

where

$$
\begin{array}{ll}
s=1 & \text { if } k \equiv 0 \operatorname{or} 4(\bmod 6) \\
s=2 & \text { if } k \equiv 2(\bmod 6)
\end{array}
$$

In (2) I choose as path of integration two contours resp. around +1 and -1 and beginning and also ending resp. at $+\infty$ and $-\infty$. In this manner I obtain

$$
m_{k}=(1 / \pi) R e(\exp (k+1 / 3) \pi i-1) \int_{1}^{\infty}\left(t^{2}-1\right)^{-1 / 2}\left(\theta+\frac{\pi i}{2}\right)^{-(k+1 / 3)} d t
$$

where $\theta=t+1 / 2 \ln t-1 / t+1$, and therefore we obtain

$$
\left|m_{k}\right| \leqq s / \pi \int_{1}^{\infty}\left(t^{2}-1\right)^{-1 / 2}\left(\theta^{2}+\frac{\pi^{2}}{4}\right)^{-(k+1 / 6)} d t
$$

By using

$$
\begin{array}{ll}
\theta^{2}+\left(\pi^{2} / 4\right) \geqq\left(\pi^{2} / 4\right) & \text { for } \quad 1<t<a \\
\theta^{2}+\left(\pi^{2} / 4\right) \geqq(t-b)^{2}+\left(\pi^{2} / 4\right) & \text { for } \quad t>a
\end{array}
$$

where a is an arbitrary number $>5 / 4$ and $b=1 / 2 \ln a-1 / a+1$, we find
(5) $\left\{\begin{array}{l}\left|m_{k}\right|<s / \pi(2 / \pi)^{k+1 / 3}\left\{\ln \left(a+\sqrt{a^{2}-1}\right)+\right. \\ \left.+\int_{c}^{\infty}\left(u^{2}+1\right)^{-(k+1 / 6)}\left\{u^{2}+(4 / \pi) b u-\left(4 / \pi^{2}\right)\left(b^{2}-1\right)\right\}^{-1 / 2} d u\right\},\end{array}\right.$
where

$$
c=2 / \pi(a-b)=2 / \pi(a-1 / 2 \ln a+1 / a-1)
$$

Here

$$
u^{2}+(4 / \pi) b u-4 / \pi^{2}\left(b^{2}-1\right)>u^{2} .
$$

In fact we have to prove the inequality

$$
2 b(a-b)>b^{2}-1
$$

which is equivalent to

$$
3 b^{2}-2 a b-1<0
$$

that is

$$
b<\frac{a+\sqrt{a^{2}+3}}{3}
$$

this inequality follows from

$$
a+\sqrt{a^{2}+3}-3 / 2 \ln (a+1 / a-1)>0
$$

which is obvious since the left hand side represents a monotonously increasing function which is positive at $a=5 / 4$.

Consequently the integral occurring in (5) is less than

$$
\begin{aligned}
& \int_{c}^{\infty} u^{-1}\left(u^{2}+1\right)^{-(k+1 / 6)} d u=1 / 2 \int_{1+c^{2}}^{\infty} v^{-(k+7 / 6)} / 1-(1 / v) d v=1 / 2 \sum_{0}^{\infty} \int_{1+c^{2}}^{\infty} v^{-((k+7 / 6)+j)} d v \\
&=1 / 2 \sum_{0}^{\infty} \frac{1}{\left(1+c^{2}\right)^{(k+7 / 6)+j}((k+1 / 6)+j)} \leqq \\
& \leqq \frac{3}{k+1} \sum_{0}^{\infty} \frac{1}{\left(1+c^{2}\right)^{(k+1 / 6)+j}}=\frac{3}{(k+1) c^{2}\left(1+c^{2}\right)^{k-5 / 6}}
\end{aligned}
$$

We define a by the equation $c=1$. In that case $a<1,94$ and $\ln \left(a+\sqrt{a^{2}-1}\right)<1,28$. This establishes the proof of formula (4).
§ 4. The object of the following sections is to deduce an upper bound for the expression $R_{n}(\zeta)$ occurring in (2). We choose the same path of integration as in the preceding section, namely two contours resp. around +1 and -1 , and beginning and also ending resp. at $+\infty$ and $-\infty$. Thus we find for $2 \pi R_{n}(\zeta)$ the sum

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{\exp (n+1 / 3) d t}{\left(t^{2}-1\right)^{1 / 2}(9+(\pi i / 2))^{n / 3}\left\{(9+(\pi i / 2))^{1 / 3}-\zeta e^{\pi i / 3}\right\}}+\int_{1}^{\infty} \frac{\exp -(n+1 / 3) \pi i d t}{\left(t^{2}-1\right)^{1 / 3}(9-(\pi i / 2))^{n / 3}\left\{(\theta-(\pi i / 2))^{1 / 3}-\zeta e^{\pi i / 3}\right\}} \\
& -\int_{1}^{\infty} \frac{d t}{\left(t^{2}-1\right)^{1 / 2}(\theta+(\pi i / 2))^{n / 3}\left\{(\theta+(\pi i / 2))^{1 / 3}-\zeta\right\}}-\int_{1}^{\infty} \frac{d t}{\left(t^{2}-1\right)^{1 / 2}(9-(\pi i / 2))^{n / 3}\left\{(9-(\pi i / 2))^{1 / 3}-\zeta\right\}} \\
& \quad \text { where } \theta=t+{ }^{1 / 2} \ln (t-1 / t+1) . \\
& \quad \text { This is in absolute value at most }
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{\left(t^{2}-1\right)^{1 / 2} \mid 0+} \frac{\left.(\pi i / 2)\right|^{n / 3}}{}\left|\frac{\exp (n+1 / 3) \pi i}{(g+(\pi i / 2))^{1 / 3}-\zeta e^{\pi i / 3}}-\frac{1}{(\theta+(\pi i / 2))^{1 / 3}-\zeta}\right| d t+ \\
& \quad+\int_{1}^{\infty} \frac{1}{\left.\left(t^{2}-1\right)^{2 / 2}\left|\frac{1}{(\pi i / 2) \mid n / 3}\right| \frac{\exp -(n+1 / 3) \pi i}{(9-(\pi i / 2))^{2 / 3}-\zeta e^{-\pi i / 3}}-\frac{1}{(9-(\pi i / 2))^{1 / 3}-\zeta} \right\rvert\, d t .}
\end{aligned}
$$

Hence

(6) $\quad\left|R_{n}(\zeta)\right| \leqq(1 / \pi) \int_{1}^{\infty} \frac{T d t}{\left(t^{2}-1\right)^{1 / 2}\left(y^{2}+\left(\pi^{2} / 4\right)\right)^{n / 6}\left|(\theta+(\pi i / 2))^{1 / s}-\zeta e^{\pi i / 3}\right| \mid\left(\theta+(\pi i / 2)^{1 / s}-\zeta \mid\right.}$,
where

$$
\begin{array}{ll}
T=\left(\theta^{2}+\left(\pi^{2} / 4\right)\right)^{1 / 0}+3^{1 / 2}|\zeta| & \text { if } n \equiv 4(\bmod 6) \\
T=\left(\theta^{2}+\left(\pi^{2} / 4\right)\right)^{1 / 6} & \text { if } n \equiv 0(\bmod 6)
\end{array}
$$

We consider only values of n which are either $\equiv 0(\bmod 6)$ or $\equiv 4(\bmod 6)$.
§5. In this section I shall prove the inequality
(7) $\left|(\theta+(\pi i / 2))^{1 / 3}-\zeta e^{\pi i / 3}\right|\left|(\theta+(\pi i / 2))^{1 / 3}-\zeta\right| \geqq \frac{(\pi / 2}{1+h_{1}^{2 / 3} \zeta}$ if $\arg \zeta=0$,
where

$$
h_{1}=(2+\sqrt{3})(2 / \pi)^{1 / 3}=3.2105
$$

and
(8) $\left|(\theta+(\pi i / 2))^{1 / 2}-\zeta e^{\pi i / 3}\right|\left|(\theta+(\pi i / 2))^{1 / 3}-\zeta\right| \geqq|\theta+(\pi i / 2)|^{2 / 3}$ if $\arg \zeta=(2 \pi / 3)$.

For $t \geqq 1$ the function θ runs though all real values, so that the point $\left(\theta+(\pi i / 2)^{1 / 3}=X+i Y\right.$ lies on the curve F defined by

$$
\operatorname{Im}(X+i Y)^{3}=\pi / 2 \quad \text { i.e. } \quad 3 X^{2} Y-Y^{3}=\pi / 2
$$

This curve has the symmetry axis $Y=X 3^{-1 / 2}$ and two asymptotes $Y=0$ and $Y=X 3^{1 / 2}$. Now we distinguish two cases.

1. Put $\arg \zeta=0$. Choosing a new rectangular coordinate system the x-axis of which coincides with the symmetry axis of F, we find for the equation of F

$$
x^{3}-3 x y^{2}=\pi / 2
$$

that is

$$
x=(\pi / 2)^{1 / 3} \lambda \quad y=3^{-1 / 3}(\pi / 2)^{1 / 3} \lambda^{-1 / 3}\left(\lambda^{3}-1\right)^{/ 4} .
$$

With respect to this system the coordinates of the point $\zeta e^{\pi i / 3}$ are $(1 / 2 \zeta \sqrt{3}, 1 / 2 \zeta)$ and those of $\zeta \operatorname{are}(1 / 2 \zeta \sqrt{3},-1 / 2 \zeta)$. By putting $\zeta=2.3^{-1 / 2}(\pi / 2)^{1 / 3} \mu$, we obtain

$$
\begin{aligned}
& \mid(\theta+(\pi i) 2))^{1 / 3}-\left.\zeta e^{\pi i / 3}\right|^{2}\left|(\theta+(\pi i / 2))^{1 / 2}-\zeta\right|^{2}= \\
& \quad=\frac{(\pi / 2)^{4 / 3}}{9 \lambda^{2}}\left\{9 \lambda^{2}(\lambda-\mu)^{4}+6 \lambda(\lambda-\mu)^{2}\left(\lambda^{3}+\lambda \mu^{2}-1\right)+\left(\lambda^{3}-\lambda \mu^{2}-1\right)^{2}\right\}
\end{aligned}
$$

The substitution

$$
v=4 \lambda^{2}(\lambda-\mu) \quad w=4 \lambda(\lambda-\mu)^{2}
$$

transforms the right hand side into

$$
\frac{(\pi / 2)^{4 / 2}}{9 \lambda^{2}}\left(v^{2}-v w+w^{2}-v-w+1\right)
$$

In virtue of $\lambda \geqq 1$ and $\mu \geqq 0$ we obtain $v^{2} \geqq 4 w \geqq 0$ and $v(v-w) \geqq 0$.
In the next section we shall prove that these inequalities imply

$$
\begin{equation*}
v^{2}-v w+w^{2}-v-w+1 \geqq \frac{9 v^{2}}{\left\{f(v-w)+(4 v w)^{1 / 2}\right\}^{2}}, \tag{9}
\end{equation*}
$$

where $f=2+4.3^{-1 / 2}=4.309$.
Hence the left hand side of (7) is at most equal to $(\pi / 2)^{1 / 2}\left(1+h_{1} \zeta\right)^{-1}$ where h_{1} has the above indicated value.
2. Put $\arg \zeta=2 \pi / 3$. The square of the left hand side of (8) is equal to $\left(X^{2}+Y^{2}+2|\zeta| X+|\zeta|^{2}\right)\left(X^{2}+Y^{2}+|\zeta| X-|\zeta| Y \sqrt{3}+|\zeta|^{2}\right)=$ $=\left(X^{2}+Y^{2}\right)^{2}+|\zeta|\left(X^{2}+Y^{2}+|\zeta|^{2}\right)(X V 3-Y) \sqrt{3}+$ $+2|\zeta|^{2}\left(2 X^{2}-X Y \sqrt{3}+Y^{2}\right)+|\zeta|^{4} \geqq\left(X^{2}+Y^{2}\right)^{2}$,
since each point of F satisfies the inequality $Y \leqq X \sqrt{3}$. This proves inequality (8).
$\S 6$. In this section the inequality (9) will be proved. We distinguish four cases, namely

1. $v \leqq 0 ; 2 . v \geqq 0 w \geqq 4 ; 3 . v \geqq 0,0 \leqq w \leqq(2-\sqrt{3})^{2}$
2. $v \geqq 0$, $(2-\sqrt{3})^{2} \leqq w \leqq 4$.
3. The left hand side of (9) is $\geqq 3 / 4$ and the right hand side of (9) is $\leqq 9 / 16$.
4. Writing $v=w+\delta \quad \delta \geqq 0$ we have

$$
\begin{gathered}
\left(v^{2}-v w+w^{2}-v-w+1\right)^{1 / 3}=\left\{(w-1)^{2}+\delta(w-1)+\delta^{2}\right\}^{1 / 2} \geqq w-1 ; \\
\frac{3 v}{f(v-w)+(4 v w)^{1 / 3}} \leqq \frac{3(w+\delta)}{f \delta+\left(4 w^{2}\right)^{1 / 3}} \leqq \frac{3 w^{1 / s}}{2^{2 / 4}}
\end{gathered}
$$

(9) follows from

$$
w-1 \geqq 3.2^{-2 / s} w^{1 / 3}
$$

which is obvious.
3. For $0 \leqq w \leqq(2-\sqrt{3})^{2}$ we have
$\left(v^{2}-v w+w^{2}-v-w+1\right)^{1 / 3}=\left\{(v-1 / 2 w-1 / 2)^{2}+{ }^{3} / 4(1-w)^{2}\right\}^{1 / 2} \geqq$

$$
\geqq(\sqrt{3} / 2)(1-w) \geqq 3(2-\sqrt{3}) ;
$$

and, writing $v=2 \varepsilon w^{1 / 2} \varepsilon \geqq 1$

$$
\frac{3 v}{f(v-w)+(4 v w)^{1 / 3}}=\frac{6 \varepsilon}{f\left(2 \varepsilon-w^{1 / 2}\right)+2 \varepsilon^{1 / 3}} \leqq \frac{6 \varepsilon}{f(2 \varepsilon-2+\sqrt{3})+2}
$$

(9) follows from

$$
f \geqq \frac{\{2 \varepsilon-2(2-\sqrt{3})\}(2+\sqrt{3})}{2 \varepsilon-(2-\sqrt{3})} \geqq 2+\sqrt{3}
$$

4. Writing again $v=2 \varepsilon w^{1 / 2}$, we have

$$
\begin{aligned}
v^{2}-v w+w^{2}-v-w+1 & =\left(w-w^{1 / 2}+1\right)^{2}+2(\varepsilon-1) w^{1 / 2}\left(-w+2 w^{1 / 2}+2 \varepsilon w^{1 / 2}-1\right) \\
& \geqq\left(w-w^{1 / 2}+1\right)^{2} .
\end{aligned}
$$

As before (9) follows from

$$
w-w^{1 / 2}+1 \geqq \frac{6 \varepsilon}{f\left(2 \varepsilon-w^{1 / 2}\right)+2}
$$

which is equivalent to

$$
\left(2-w^{1 / 2}\right)\left(f w-f w^{1 / 2}-2 w^{1 / 2}+f-2\right)+2(\varepsilon-1)\left(f w-f w^{1 / 2}+f-3\right) \geqq 0
$$

The last inequality is obvious since the second term is $\geqq 0$ already for $f>4$ and the first term vanishes for the first time in the w interval for $f=2+4.3^{-1 / 2}$. It is impossible to find a better constant in (9), since the combination $v=-2+2 \sqrt{3}, w=4-2 \sqrt{3}$ for which $v^{2}=4 w$ transforms (9) into an equality.
§ 7. The results of the last sections will be applied to the remainders R_{n} and U_{n} occurring in (2) and (3). Substituting (7) and (8) in (6) we obtain

$$
\begin{array}{r}
\left|R_{n}(\zeta)\right| \leqq(2 / \pi)^{2 / 3}(1+h \zeta) \cdot(1 / \pi) \int_{1}^{\infty}\left(t^{2}-1\right)^{-1 / 2}\left(\theta^{2}+\left(\pi^{2} / 4\right)\right)_{1}^{-(n / 6)} T d t \\
\text { if } \arg \zeta=0 ; \\
\left|R_{n}(\zeta)\right| \leqq(2 / \pi)^{2 / 3} \cdot(1 / \pi) \int_{1}^{\infty}\left(t^{2}-1\right)^{-1 / 2}\left(\theta^{2}+\left(\pi^{2} / 4\right)\right)^{-(n+2 / 6)} T d t \\
\text { if } \arg \zeta=(2 \pi / 3) .
\end{array}
$$

From § 3 it follows
(10) $1 / \pi \int_{1}^{\infty}\left(t^{2}-1\right)^{-1 / 2}\left(\theta^{2}+\left(\pi^{2} / 4\right)^{-(k / 6)} d t \leqq(2 / \pi)^{k / 3+1}\left\{0 \cdot 64+\frac{3.2-k / 6}{k}\right\}\right.$
valid for all positive integer values of k.
Denoting the left hand side of (10) by e_{k} we get

$$
\begin{array}{ll}
\left|R_{n}(\zeta)\right| \leqq(2 / \pi)^{2 / 3}\left(1+h_{1} \zeta\right)\left(1+h_{2} \zeta\right) e_{n-1} & (\arg \zeta=0 ; n \equiv 4(\bmod 6)) \\
\left|R_{n}(\zeta)\right| \leqq(2 / \pi)^{2 / 3}\left(1+h_{1} \zeta\right) e_{n-1} & (\arg \zeta=0 ; n \equiv 0(\bmod 6)) \\
\left|R_{n}(\zeta)\right| \leqq(2 / \pi)^{2 / 3}\left(1+h_{2} \zeta\right) e_{n+1} & (\arg \zeta=2 \pi / 3 ; n \equiv 4(\bmod 6)) ; \\
\left|R_{n}(\zeta)\right| \leqq(2 / \pi)^{1 / 3} e_{n+1} & (\arg \zeta=2 \pi / 3 ; n \equiv 0(\bmod 6))
\end{array}
$$

where

$$
h_{1}=(2+\sqrt{3})(2 / \pi)^{1 / 3}=3.2105 \quad \text { and } \quad h_{2}=\sqrt{3}(2 / \pi)^{1 / 3}=1 \cdot 4900
$$

Hence we find for U_{n} the upper bound

$$
\begin{aligned}
\left|U_{n}\right| \leqq\left(2^{1 / /} \cdot \omega^{1 / 2} / \pi^{5 / 2}\right)\left\{|\cos \omega \pi / 2| \int_{0}^{\infty} e^{-\omega \zeta^{3}}(1+\right. & \left.h_{1} \zeta\right)\left(1+h_{2} \zeta\right) \zeta^{n} d \zeta \cdot e_{n-1}+ \\
& \left.+\int_{0}^{\infty} e^{-\omega \zeta^{5}}\left(1+h_{2} \zeta\right) \zeta^{n} d \zeta \cdot e_{n+1}\right\}
\end{aligned}
$$

if $n \equiv 4(\bmod 6)$ and

$$
\begin{aligned}
&\left|U_{n}\right| \leqq\left(2^{1 / /} \cdot \omega^{1 / 2} / \pi^{5 / 2}\right)\left\{|\cos \omega \pi / 2| \int_{0}^{\infty} e^{-\omega \zeta^{3}}\left(1+h_{1} \zeta\right) \zeta^{n} d \zeta \cdot e_{n-1}+\right. \\
&\left.+\int_{0}^{\infty} e^{-\omega \xi^{3}} \zeta^{n} d \zeta \cdot e_{n+1}\right\}
\end{aligned}
$$

if $n \equiv 0(\bmod 6)$.
Or finally
(11a) $\left|U_{n}\right| \leqq \frac{2^{\gamma / \bullet} \omega^{1 / 2}}{3 \pi^{1 / 2}}\left\{|\cos \omega \pi / 2|\left(\gamma_{0}+c_{1} \gamma_{1}+c_{2} \gamma_{2}\right) e_{n-1}^{\prime}+\left(\gamma_{0}+c_{3} \gamma_{1}\right) e_{n+1}\right\}$,
if $n \equiv 4(\bmod 6)$, and
11b) $\quad\left|U_{n}\right| \leqq \frac{2^{1 / \theta} \omega^{1 / 2}}{3 \pi^{\pi^{1 / 2}}}\left\{|\cos \omega \pi / 2|\left(\gamma_{0}+c_{4} \gamma_{1}\right) e_{n-1}+\gamma_{0} e_{n+1}\right\}$,
if $n \equiv 0(\bmod 6)$, where

$$
\begin{aligned}
& \gamma_{i}=\Gamma\left(\frac{n+j+1}{3}\right) \omega^{-\frac{n+j+1}{3}} \quad(j=0,1,2), \\
& c_{1}=2(1+V 3)(2 / \pi)^{1 / 3}=4 \cdot 7005 ; \quad c_{2}=(3+2 \vee 3)(2 / \pi)^{2 / s}=4 \cdot 7837 \\
& c_{3}=\sqrt{ }=\sqrt{2}(2 / \pi)^{2 / 3}=1 \cdot 4900 ; \quad c_{4}=(2+\sqrt{2})(2 / \pi)^{1 / 3}=3 \cdot 2105
\end{aligned}
$$

To show the practible applicability of (4) and (11) a numerical example will be given:

$$
M_{4,0}(8)=1.4494-0.0136-0.0013+U_{10}=1.4345+U_{10} .
$$

(11a) gives

$$
\left|U_{10}\right| \leqq 0 \cdot 0009
$$

Further we have

$$
m_{6}=-0.047 \text { and } e_{6}=0.184
$$

Koninklijke-Shell laboratorium, Amsterdam

[^0]: ${ }^{1}$) The use of confluent hypergeometric functions in mathematical physics and the solution of an eigenvalue problem. Appl. Sci. Res. (A) 1950.

