SOME THEOREMS IN THE THEORY OF UNIFORM DISTRIBUTION

BY

L. KUIPERS AND B. MEULENBELD

(Communicated by Prof. J. G. VAN DER CORPUT at the meeting of Febr. 25, 1950)

§ 1. In a preceding paper [1] we deduced the following

Theorem. If f(t) is a differentiable function, defined for $t \ge 0$, and if f'(t) is bounded with

$$t f'(t) \to 0 \text{ for } t \to \infty$$

then f(t) is not C1-uniformly distributed (mod 1). 1) 2)

In the present paper we prove the following generalisations:

Theorem I. If f(t) is a differentiable function, defined for $t \ge 0$, and if t f'(t) is bounded with

$$t f'(t) \to A \text{ for } t \to \infty$$

where A is a fixed number, then f(t) is not C_I uniformly distributed (mod 1). This Theorem is a special case of the following

Theorem II. If f(t) is a differentiable function, defined for $t \ge 0$, if tf'(t) is bounded, and if there exists a fixed $T^* \ge 0$ such that for $t > T^*$

$$|t f'(t) - A| < B < (1/2\pi),$$

where A and B are fixed numbers, then f(t) is not C^{I} uniformly distributed (mod 1).

Proof of Theorem II.

We apply the C-test. We shall prove that

$$I = (1/T) \int\limits_0^T e^{2\pi i h f(t)} dt$$

with h=1 does not tend to zero for $T\to\infty$.

By integration by parts we have

$$I = e^{2\pi i f(T)} - (2\pi i/T) \int_{0}^{T} t f'(t) e^{2\pi i f(t)} dt.$$

¹⁾ For the definitions of C^{I} , C^{II} and C^{III} uniform distribution (mod 1) we refer to [2].

²) The condition, $f(t) \to \infty$ for $t \to \infty$, which occurs in Theorem 3 of [1], can be omitted.

Hence

$$\begin{split} (1+2\,\pi\,i\,A)\,I &= e^{2\pi i f(T)} - (2\pi i/T) \int\limits_0^T \left\{t\,f'\,(t) - A\right\} e^{2\pi i f(t)}\,dt \\ &= e^{2\pi i f(T)} - (2\pi i/T) \int\limits_0^{T^*} - (2\pi i/T) \int\limits_{T^*}^T \\ &= e^{2\pi i f(T)} - I_1 - I_2. \end{split}$$

From this it follows:

(1)
$$\sqrt{1+4\pi^2 A^2} |I| \geqslant 1-|I_1|-|I_2|.$$

For an arbitrarily chosen positive number ε there exists a $T^{**} \geqslant T^*$ such that for $T > T^{**}$

$$(2) |I_1| < \varepsilon,$$

since t f'(t) is bounded. For all $T > T^*$ we have furthermore

(3)
$$|I_2| < \frac{2\pi (T - T^*)}{T} B < 2\pi B.$$

From (1), (2) and (3) it follows that

(4)
$$\sqrt{1+4\pi^2 A^2} |I| > 1-2\pi B - \varepsilon \text{ for } T > T^{**}.$$

Since the positive number ε may be chosen arbitrarily small, it follows from (4) and $2 \pi B < 1$ that |I| does not tend to zero for $T \to \infty$. This completes the proof.

Examples. The following functions, of which the behaviour with regard to the C-uniform distribution (mod 1) could not yet ascertained by the Theorems in [1], satisfy the assumptions of Theorem II:

(a)
$$f(t) \equiv \log t + c \int_0^t (\sin u/u) du$$
,

where c is a fixed number with $|c| < 1/2 \pi$.

For c = 0 we meet again the function $\log t$.

(b)
$$f(t) = A \log t \sin (\log \log t)$$
,

where A is a constant with $|A| < 1/2 \pi \sqrt{2}$.

Hence these functions are not C¹-uniformly distributed (mod 1).

§ 2. In [1] we proved the following

Theorem. If f(t) is a differentiable function, defined for $t \ge 0$, and if f'(t) > 0 and monotonically non-decreasing for $t \ge 0$, then f(t) is C^{III} -uniformly distributed (mod 1).

N. H. Kuiper (Delft, Netherlands) reported us, that, if f'(t) tends to a constant $c \neq 0$ for $t \to \infty$, the condition of the monotony of f'(t) is not necessary for f(t) being C^{I} uniformly distributed (mod 1). In order

to prove this statement he made use of a method similar to that developed in [3].

For the case that $f'(t) \to c \neq 0$ for $t \to \infty$ we shall prove the following

Theorem III. If f(t) is a differentiable function, defined for $t \ge 0$, and if

(5)
$$f'(t) \to c \text{ for } t \to \infty,$$

where c is a fixed number $\neq 0$, then f(t) is C^{III} -uniformly distributed (mod 1).

Proof. Without loss of generality we assume that c is positive.

It follows from (5) that for T sufficiently large f(t) possesses an inverse function t = F(u). Then from (5) it follows that

$$F'(u) \to (1/c) > 0 \text{ for } u \to \infty.$$

Hence, for $u > U^* = U^*(\varepsilon) = f(T^*)$ we have

$$||F'(u)-(1/c)|<(\varepsilon/c),$$

where ε is an arbitrarily small positive number. Now, applying the C-test, we have for every fixed h, integer and $\neq 0$, and $T > T^*$

$$\begin{split} I &= (1/T) \int\limits_0^T e^{2\pi i h f(t)} \ dt = (1/T) \int\limits_0^{T^*} + (1/T) \int\limits_{T^*}^T = \\ & (1/T) \int\limits_0^{T^*} e^{2\pi i h f(t)} \ dt + (1/T) \int\limits_{f(T^*)}^{f(T)} e^{2\pi i h u} \ F'(u) \ du = \\ & (1/T) \int\limits_0^{T^*} e^{2\pi i h f(t)} \ dt + (1/T) \int\limits_{f(T^*)}^{f(T)} \{F'(u) - (1/c)\} \ e^{2\pi i h u} \ du + \\ & (1/cT) \int\limits_{f(T^*)}^{f(T)} e^{2\pi i h u} \ du = I_1 + I_2 + I_3. \end{split}$$

It is obvious that $I_1 \to 0$ for $T \to \infty$. Furthermore we have

$$|I_2| < \frac{\epsilon}{cT} \left\{ f(T) - f(T^*) \right\} < \frac{\epsilon f(T)}{cT}.$$

It follows from (5) that

$$\frac{f(T)}{T} \to c \text{ for } T \to \infty.$$

Hence

$$I_2 \to 0 \text{ for } T \to \infty.$$

Finally we have

$$|I_3| \leqslant \frac{1}{\pi |h| \, cT}$$
 and so $I_3 \to 0$ for $T \to \infty$.

Thus, for $T \to \infty$, the expression I tends to zero.

Hence: f(t) is C^{I} -uniformly distributed (mod 1). Furthermore it follows from the *Theorem*:

If f(t) $(t \ge 0)$ is a differentiable function with f(t)/t bounded, if $f'(t) \ge \lambda > 0$ with fixed λ , and if f(t) is C^{I} -uniformly distributed (mod 1), then f(t) is also C^{III} -uniformly distributed (mod 1),

proved in [4], that the function of Theorem III is also C^{III} -uniformly distributed (mod 1).

Example. The function

$$f(t) \equiv t + \frac{\sin t}{t}$$

satisfies the assumptions of Theorem III with c = 1, so that f(t) is C^{III} -uniformly distributed (mod 1).

University of Indonesia.

Bandung, January 1950.

LITERATURE

Kuipers, L. and B. Meulenbeld, Asymptotic C-Distribution (Second Communication), Proc. Kon. Ned. Akad. van Wetenschappen, 52, 1158-1163 (1949).
and ————, Asymptotic C-Distribution (First Communication), Proc. Kon. Ned. Akad. van Wetenschappen, 52, 1151-1157 (1949).
———, De Asymptotische verdeling mod 1 van de waarden van meetbare functies, Diss. V.U., Leiden (1947).
———, On real periodic functions and functions with periodic derivatives,

Proc. Kon. Ned. Ak. van Wetenschappen, 53, 226-232 (1950).