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§1. In a preceding paper [1] we deduced the following

Theorem. If f(t) is a differentiable function, defined for t > 0, and
if f'(¢) is bounded with
tf'(t) = 0 for t - oo,

then f(t) is not Ci-uniformly distributed (mod 1).1)2)
In the present paper we prove the following generalisations:

Theorem I. If f(t) is a differentiable function, defined for t > 0,
and if tf'(t) is bounded with

tf'(t) > A for t— oo,

where A is a fixed number, then f(t) is not C1 uniformly distributed (mod 1).
This Theorem is a special case of the following

Theorem II. If f(¢) is a differentiable function, defined for t > 0,
if tf'(t) is bounded, and if there exists a fixed T* > 0 such that for t > T*

[t (®)—A4] < B < (1/2x),

where A and B are fixed numbers, then {(t) is not C* uniformly distributed
(mod 1).

Proof of Theorem II.
We apply the C-test. We shall prove that

I=(1T) J?e‘.’.nih!(t) dt
0

with =1 does not tend to zero for 7' — oo.
By integration by parts we have

T
I= e?nil(T) — (27."//77) J‘ tf/(t) ei‘:ril(t) dt
0

1) For the definitions of CI, CII and C'™I uniform distribution (mod 1) we
refer to [2].

?) The condition, f(f) — oo for t— oo, which occurs in Theorem 3 of [1],
can be omitted.
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Hence
(14 2nid) [ = " — (27i[T) }:{t f' (1) — A} e2if0 dt
— M (27i/T) 1°~ (2ni/T)i
. = ] ],
From this it follows:
(1) Vit am &2 |1 > 1 —|L| —|T,.

For an arbitrarily chosen positive number ¢ there exists a 7** > T'*
such that for 7' > T'**
(2) 1| <e,
since ¢ f'(t) is bounded. For all 7' > T* we have furthermore
(3) 11| <2200 B <24 B.

From (1), (2) and (3) it follows that
(4) Y1+ 42 A2 |I|> 1—2nB—¢ for T > T.

Since the positive number ¢ may be chosen arbitrarily small, it follows
from (4) and 2z B < 1 that |I| does not tend to zero for 7' — oco. This
completes the proof.

Examples. The following functions, of which the behaviour with
regard to the C-uniform distribution (mod 1) could not yet ascertained
by the Theorems in {1], satisfy the assumptions of Theorem II:

(@) f@)=logt+ cf (sin u/u) du,

where ¢ is a fixed number with |¢| < 1/2 7.
For ¢ = 0 we meet again the function log &.

(b) f(t)= A log tsin (log log ?),

where A is a constant with |4]| < 1/2z)/2.
Hence these functions are not C'-uniformly distributed (mod 1).

§2. In [1] we proved the following

Theorem. If f(t) is a differentiable function, defined for t > 0, and
if f'(t) > 0 and monotonically mon-decreasing for t > 0, then f(t) is
C'™-uniformly distributed (mod 1).

N. H. Kureer (Delft, Netherlands) reported us, that, if f'(f) tends
to a constant ¢ 7 0 for ¢ — oo, the condition of the monotony of f'(¢)
is not necessary for f(t) being C! uniformly distributed (mod 1). In order
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to prove this statement he made use of a method similar to that
developed in [3].
For the case that f'(t) - ¢ = 0 for ¢t — oo we shall prove the following

Theorem III. If f(t) ts a differentiable function, defined for t > 0,
and if

(5) f(t)—c for t - oo,

where ¢ is a fixed number £ 0, then f(t) is C™M-uniformly distributed
(mod 1).

Proof. Without loss of generality we assume that ¢ is positive.
It follows from (5) that for 7" sufficiently large f(f) possesses an inverse
function ¢ = F(u). Then from (5) it follows that

F' (u) - (1/c) > 0 for u — oo.
Hence, for w > U* = U*(¢) = f(T'*) we have
NE" () — (1) | < (efo),
where ¢ is an arbitrarily small positive number. Now, applying the
C-test, we have for every fixed &, integer and # 0, and 7' > T'*
T T+ T
L= (T) | e dt= (UT) T+ (UT) [ =
0 0 T+

(I/T J‘ e‘l'nhf(l) dt+ I/T J‘ ez-zihu F' (u) du =
i

T*)

1/T -['6211111(0 dt+ J‘ {F (I/C)} e‘lnihl( du_}_

T
(1/eT) [ e gu = I, + I, + I,

(1)

It is obvious that I; — 0 for 7' — co. Furthermore we have

|1,] < 5§

. e f(T)
fm—f@yy < L2
It follows from (5) that

f(

—¢ for T — oco.
Hence

I,— 0 for T — co.
Finally we have

-~ 1 ; -
| I5] < TTRTeT and so I; — 0 for 7 — oco.

Thus, for 7' — oo, the expression I tends to zero.
Hence: f(t) is CT-uniformly distributed (mod 1). Furthermore it follows
from the Theorem :
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If f(t) (¢t > 0) is a differentiable function with [(t)/t bounded, if
ft) > 2> 0 with fized A, and if f(t) is CT-uniformly distributed (mod 1),
then [(t) is also C™-uniformly distributed (mod 1),

proved in [4], that the function of Theorem III is also C™-uniformly
distributed (mod 1).

Example. The function
fO)=t+ 2
satisfies the assumptions of Theorem IIT with ¢ = 1, so that f(¢) is C™I-
uniformly distributed (mod 1).

University of Indonesia.
Bandung, January 1950.
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