MATHEMATICS

ON THE UNIFORM DISTRIBUTION OF THE VALUES OF
FUNCTIONS OF n VARIABLES

BY

B. MEULENBELD

(Communicated by Prof. J. G. vaN DER CorPUT at the meeting of Jan. 28, 1950)

§ 1. Introduction.

In a previous paper KuipErs and the author of this paper [1]
introduced the notion of a (mod. 1) continuously- (or C-)uniformly
distributed function f(f) of one variable ¢. This notion is an analogue
of that of a (mod. 1) discretely- (or D-) uniformly distributed sequence
of numbers f(r) (=1, 2,...).

In the present paper I shall give an extension of the theory in [1],
by considering instead of a function f(t) of one variable now a function
f(ty, ..., t,) of the variables #;,..., t,. For the D-case we recall the
definition of D-uniform distribution (mod 1) of a system of m functions
each depending on = variables given by WEWL [2] and vAN DER
Corpur [3]. We mention this definition [4].

D-Definition. Let m and n be given positive integers, and let F be
a sequence of n-dimensional intervals

Q: a=uz,<b, (a, and b, integer, u=1,...,n),

where the number N = N(Q) of lattice-points (x)= (x,..., x,) of @
tends to infinity if Q runs through the sequence F. In each lattice-point
of @ a system of m real functions f,(x)=f,(2y,..., x,) (=1,..., m)
is defined. This system of functions f, is said to be D-uniformly distributed
(mod 1) in the intervals Q of F, if for each system of m numbers vy, . . .,
VYm With 0=y, <1 the number N'=N'(Q)=N'(Q, 7,---, vu) Of
lattice-points (z) of @ with
0=f <y (mod1l) v=1,...,m)

satisfies the relation :

P () .
lim ", Q) = 71V2eVm

if Q@ runs through the sequence F.

Vax DpErR Corpur [3] proved the following theorem on uniform
distribution.

D-test. It is mecessary and sufficient for the D-uniform distribution
(mod 1) of the system of functions f(xy,..., x,) v=1,..., m) that,
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for any lattice-point (hy, ..., h,) 7 (0,..., 0) this system satisfies the
relation :

] 1 27d {hyfyl@) + ... +hy, ()}
th_(Q_) (I)Zinoe @) .oty g} — ()
if @ runs through the sequence F.

In §2 T shall give an analogous definition and an analogous theorem
for the case of C-uniform distribution (mod 1). In §§3 and 4 I shall
apply this C-test in the special case of one function of n variables. § 3
deals with a class of functions which are not C-uniformly distributed.
The functions considered in § 4 are shown to be C-uniformly distributed.
§ 5 gives some examples.

§ 2. C-definition and C-test.
An n-dimensional extension of the definition of C-uniform distribution
may be formulated as follows.

C-Definition. Let m and n be given positive integers and let F be
a sequence of n-dimensional intervals

Q: 0=8,=1,<T, (u=1,...,n),
where the measure of @ tends to infinity, if @ runs through F. For all
points ()= (t;,..., t,) of all @ a system of n real measurable functions
flty, ... t) (v=1,..., m) is defined.
Let vy, ..., yn be m numbers with 0 <y, <1 (v=1,..., m). We
denote by
0,0,y f, (b1, - .-+ %)) v=1,...,m)

the following characteristic functions :

0,=1 for 0<f,(¢y,...,¢t) <y, (mod 1),

6,= 0 elsewhere.
The measure of the set of points (i, ..., t,) in Q satisfying:
Oéfv(tl,tn)<‘}}v(m0dl) (v=1,...,m)

18 the Lebesgue-integral:

T, T,
I(Q)=Sf . SJ- 61 (0’71,f1) e 'B(O,ymr.fm)dtl' 8 'dtn'
Now we define :

The system of functions f,(t,, ..., t,) 15 said to be C-uniformly distributed
(mod 1) in the intervals @ of F, if for any system of fized vy, the system f,
satisfies:

: I1@) _
m o — oy Ty = 1 - Ym
if @ runs through F.
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Analogous to the D-test we have now:

C-test. It is mecessary and sufficient for the C-uniform distribution
(mod 1) of the system of functions f,(t;,..., t,) (v=1,..., m) in the
intervals Q of F that, for any lattice-point (hy, ..., h,) 7 (0,..., 0) the
system f, satisfies the relation :

. 1 T, Ty -
278 (I fl (D + .o+ hy, 1, (D} g —
lim Ty =8 (T8 [5[1 . .g e m 'm dtl T dtn 0,

if @ runs through F.

Remark. The proof of this test is quite analogous to that of the
D-test given by vaN DER CorpUT [3]. For the case of one function with
one variable, and a system of » functions of one variable KuipERs gave
the C-proof in his dissertation [5].

n

§ 3. Functions which are not C-uniformly distributed.
Theorem 1. Let F be a sequence of intervals

Q: 0=8,=t, <T, (u=1,...,m),
where the measure of @ and T,—S, tend to infinity, if Q runs through F.
Let f(ty, ..., t,) be a function, defined for all (t)=(t, ..., t,) of all Q,

and let f(t) possess for these points (t) first partial derivatives with respect
to each wariable. Furthermore we suppose that f(t) has the following
properties :

(19)* )l “at_’ <M for all t=1(t;,..., t,) tn all Q, where M is a

fixed posztwe number.

(20) lim £,/ =0 (=1,...,n)
ty—> 0 v
uniformly in (&, ..., t,_).
Then f(t,, . . ., t,) is not C-uniformly distributed (mod 1) in the intervals
Q of F.

Proof. Putting
P=(T,—8,) ... (T8,

we have for each fixed integer & -~ 0:

T,
o= [ jew'm ot dty . b=
n S,

n

_ _1— J?'x- - f_l {T ity ity 1. Tp) __ S 2k (e nty 1.8 y) +
P g, Sp—1
Ty
. of (¢ ’ t 9. )
—2nih [ 1, A st b qeinitente) dt, | dty . . dty s,
Sn

*) * Note added while correcting proofsheets :
This assumption (1°) can be omitted without considerable alternation in the proof.

21
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From assumption (2°) it follows that, given a positive number e,
there exists a 7, such that for ¢, =7, = T,(¢) (independent of

A A

(1)

of (b1 5tn) ‘ <

b

4 | h|"
Hence, if T, > S,, and 8, is bounded:

/

2"'hJ' J't Af (bya-eestn) pominsity,..t) dt, . ..dt,

T ot
(2 2nhf f 2:th 2-z|h|(T'—— ) M n
= Py —Sn
T,—T,*
+ 7 s, 2

(by assumption (1°) and (1)), and so it is obvious that (2) tends to zero,
if T,—8, — oc.
If 8, is not bounded, then for S, large enough the expression (2) is
< ¢/2, so that also in this case (2) tends to zero if T, — 8, — oo.
Now we consider

|
Ef f {T bty 1. ), @2 tu 1S} Lty =
51 Sp—1
Ty Tn—l 5
_ 1 J‘ ( S,) eZritfthnty—1.Ty) L Q. {ezmh/(h tp—1.Tn) 4
- S1 n—l

—eiMtn 1Sy di, =

1
— J- f 2 by 1. Ty) dty...dt,_,+ 1,
n—1 §, §

n—1

If 8, is bounded, then

28,

|1,] =755 and so I, >0 if T, — 8, — oo.
n— Pn

If 8, is not bounded, then, using the inequality:
| e‘.’niu_e‘.’.niv| é on | u—v],
we have:
|I lé .r I S 2”‘}"' ’f tl; n——lyT) f(tl’ n—l’ |dt1 dtn—l
S8

T—
2”|hij' _[ lS Of (t15-- tn—l’g) dtl

Py 1 8 ot
n—1 o1 Sn—l n

n—l



(where S, <& <T)

927! T, Tp— ) s e
ﬂ,h| ‘..J' §|j(tl—attl~§)!dt1 -dn—l

From assumption (29) it follows that this expression tends to zero,
if T, — 8, — oo, hence I, — 0 also in this case.
Now we apply the same argument to the integrals:

1 i Tu—l 2
J‘ e_-nhl(l, 1. Ty) dtl . dtn——l’

Py S1 S,

n—1
1 T2y ni(t T, ..T,)
o [ J et e T Aty
nw—a Sy ,L_)

and so on, so that I can be reduced to the expression

e_mhI(Tl iTn) ,

apart from a finite sum of terms, of which each tends to zero, if @ runs

through F. Hence, by the C-test the function f(¢,, . . . , £,) is not uniformly
distributed (mod 1).

§ 4. C-distributed functions.
Theorem 2. Let F be a sequence of intervals

Q: 08, <t <T, (u=1,...,0),

where the measure of @ and T, — 8, tend to infinity if @ runs through F.

Let f(t)=f(t;,..., t,) be a function defined for all ()= (t;,..., t,) of

all Q, and let f(t) possess a partial derivative with respect to t, with the

properties :

;Tf is monotonically non-decreasing in t, for each fixed (¢, ..., t,_;);
S
xn, =

ts C-uniformly distributed (mod 1) in the intervals @ of F.

= A> 0 for A fized, independent of t,, ..., t,_,. Then f(t;,..., 1)

Proof. Putting P= (T, —8,)...(T,—8,) we have for every integer
h#£0:

T, Ty,
I=1 (... [ et g .. . di
N1 n
1 T, Tp—1 g flyeoity—3. Ty, i d ?
4 . 27il (Jqy
7 | J b! oot dty...dt,_,
Ch S ftyeensly 1.8, — 7 btn
1 T, Tp— S tyaeealy 1. )
==1.. —- e gy dty .. .dt,
P f J (D,f (ty5--- n—ly‘sn)j 1 n—1

YA ety 1.8,
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where 8§, <& <T, (by the mean-value-theorem). Hence by our
assumptions:

1% 1
= 1" _1_
Il=p fJ x|h|A - Ta—Bm=|h]1’
81 Sp—1

and this expression tends to zero if 7, — S, - oco. So f(t;,..., t,) is C-
uniformly distributed (mod. 1).

Theorem 3. Let F be a sequence of intervals
Q: 0=8,=t.<T, (u=1,...,n),

where the measure of @ and T, — 8, tend to infinity if Q runs through F.

Let f(t)=f(ty, ..., t,) be a function, defined for all (t)= (t;,..., t,)
of all Q, and let f(t) possess a partial derivative with respect to t, with
the properties :

;T]:, < 0, monotonically non-increasing, and continuous in t,, uniformly
R I
(T,— ,,)WI”+Z‘_I'T")—>OO, uniformly in t,,....t,_,, tf T,—S,—>oo.

Then f(t;, ..., t,) 18 C-uniformly distributed (mod 1) in the intervals
Q of F.

Proof. Putting P= (T, —S,)...(T,—8,) we have for every integer
h#0:

Ty T,

1 o
I=5[...[emttody ... di,
Sy Sy
. T, Ty g Tibisssnnty—gs Tg) o
e2nihu gy,
=;—;‘J.---f ,J‘ m’—"m dtl"-dtn—l
A Sn—1 [ Mntp—18) — g
T, Tp— S fitoonty—q. T)
— 1 _—l___ 2nihu
=2 f (af i f eitugdy e L. dt,_,
8 Som1 (T o1, (et &
(where S, < &, <T,).
Hence
T, Tp—1
11| < 1 f J' dty...dty—;
= (Tl_Sl)~--(Tn—1'—Sn—l)”|h|s e (T,.—S,.)b’ (t13-++stn—1, T'n)

1 Sp—1 Btn

From our assumptions it follows that the last expression tends to
zero if T, — &S, — oo, so that also I — 0. So f(¢,..., #,) is uniformly
distributed (mod 1).
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§ 5. Ezamples.
In the present paragraph we consider the sequence F of intervals
Q: 2<t,<T (u=1,...,n)

with 7' — oco.

It is easily seen that for the following functions f(¢)= f(t;, ..., t,)
the assumptions of Theorem 1 are satisfied, so that these functions are
not C-uniformly distributed (mod 1) in the intervals @ of F':

ft)=1glg (¢, ... t);
f)=1glg t,+ ...+ t,);

=Vg(t,...t) (p>1);
f[O=Vigt,+...+t) (@>1).

From Theorem 2 it follows that the functions

&)= b

&) =ti+ ...+ b
ft)y= e" T,

f(t) = e’1+"'+’n

are uniformly distributed (mod 1) in the intervals @ of F, and from
Theorem 3 it follows that the functions

f( )= l in (p > 1)’
it =Vp o >,
- § n }p (p > 1)’
= {lg t1 +.+)P p>1)

are C-uniformly distributed (mod 1) in the intervals @ of F.

Bandung, Jan. 1950 University of Indonesia
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