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11. Functions occurring in the statis#cal description ot the system. -

The object of the following sections is to obtain expressions for V1V2 and 

vi v2 • For this purpose it will be necessary to intro duce certain statistical 
functions connected with the system. At first sight one might suppose 
that there would exist an analogy between the problems to be consi­
dered here and some investigations by KAl\1PÉ DE FÉRIET on correlation 
coefficients associated with stationary random functions 4). On closer in­
spection, however, it will be seen that the present system is far more 
complicated than the cases treated by KAl\1PÉ DE FÉRIET. The com­
plication is due to the nature of the relations between the Ai and Ti. The 
values of these quantities are derived from two sets of increasing numbers, 
~. for the Ai, 0'. for the Ti. in such a way that every Ai is associated with 
both T i - 1 and Ti; and every Ti with both Ai and AH1 . This makes it impossible 
to define simple independent elements out of which the system can be 
built up, and thus far I have not succeeded in finding a convenient and 
precise description of the total ensemble of states possible for the system, 
together with an indication of the way in which all particular cases 
out of this ensemble can be obtained and counted. 

In view of this difficulty the following way of attack has been chosen. 
We assume that the system has been given at a certain instant (all 
deductions of this section and the next ones will refer to a single instant 
of time only; problems of development in the course of time will not 
come up before section 17). Since the system is of infinite extent, we 
can assume that in itself it will already contain all situations compatible 
with a given set of statistical features, so that it is not necessary to intro­
duce a collection of systems, to be treated simultaneously. We can then, 
by measuring and counting, determine various statistical properties of 
this given system. 

*) Continued from these Proceedings, p. 247 -260. 
4) See J. KAMPÉ DE FÉRffiT, Les fonctions aléatoires stationnaires et la théorie 

statistique de la turbulence homogène, Ann. de la Soc. Scientifique de Bruxelles, 
59, serie I , 145 (1939). 
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In the first place, starting from an arbitrary value of i, we make a list 
of the lengths of the consecutive segments: 

Such a list can be made beginning from any value of i. 
If we give attention to the length of a single segment, we can determine 

a distribution function 11 (.I.) d.I., defined in such a way that in a group of 
N single segments, chosen either consecutively or at random (without 
reference to their lengths), there will be N 11(.1.) dÄ segments with lengths 
between .I. and .I. + d.I., provided N is sufficiently large. The assumption 
concerning the statistical homogeneity of the system ensures that such 
a function 11(.1.) will exist. Evidently we shall have: 

00 

(36) ; f IdÄ)). dÄ = ;:: = l 
o o 

We shall further introduce distribution functions Ik (Ad dAk for the 
totallength 

(37) Ak = Äi+l + Äi+2 + ... + Äi+k = ~i+k- ~i 

of a set ol k consecutive segments. The function h is defined in such a way 
that in a series of N sets of k consecutive segments there will be 
NIk (Ak) dAk sets with total lengths between Ak and Ak + dAk. - When 
no ambiguity is to be feared we shall of ten write Ik (.I.) dÄ instead of 
Ik (Ak) dAk. The functions Ik (.I.) will satisfy the relations: 

00 00 

(38) f IdÄ) dÄ = 1 f h(Ä) .I. dÄ = Ak = kl 
o o 

We must expect that there will exist a connection between the func­
tions Ik and 11' which could be formulated mathematically if we should 
know the statistical relations existing between the lengths of conse­
cutive segments. Without explicit calculation it can be observed that 
when the quantity 

10 = lim 11(.1.) for .I. -+ 0 

has a finite value different from zero, the function Ik (.I.) will be of order 
Äk-l for .I. -+ o. Tt must be kept in mind that 10 is of the dimension: 
(length )-1 . 

It seems probable that all functions Ik (Ak ) will decrease to zero expo­
nentially when Ak increases without limit. We shall introduce the assump­
tion that 

00 

(39) L Id1J) converges for every finite value of 1J 
k~1 

We can even assume that 

(39a) 



395 

provided'r} is sufficiently large. For E ft ('r}) d'r} is the probability to find a 
vertical segment at a point ~i+h (where h is not known a priori) satisfying 
the condition : 

~i + 'r} < ~i+h < ~i + 'r} + d'r}. 

This probability must become independent of'r} when 'r} is large enough. 
The assumption (39) entails that 

(40) 

will be convergent for every finite value of 'r}, m being an arbitrary positive 
quantity (independent of k). With m = 0 we shall have 

(40a) 
00 '1 

L f h('r}) d'r} = T - constant 
k-1 o 

for large 'r}, in those cases where (39a) holds. 
A distribution function Fk (,Ä,., Ak) d,Ä,. dAk for the simultaneous values 

of À. i and Ak = À.i+1 + ... + À.i+k in a set of (k + 1) consecutive segments, 
will occur as an auxiliary function at a certain point of the deductions. 

As far as the arrangement of the segments À.i is concerned, the most 
important statistical features of the system are characterised by the 
functions tk and Fk' These functions may differ from one type of system 
to another. For a given system they mayalso vary in the course of time. 

12. Thus far no attention has been given to the values of the Ti or Ci' 
We cannot simply associate a value Ti with every À.i , since the statistical 
connection between T. and ,Ä,. cannot be different from that between 
Ti-1 and Äi' To associate with every Äi a half sum t (Ti-1 + T.) would be 
possible in principle, but makes it difficult to find the values of the i. 
separately. (It will be attempted to make use of this idea in section 27.) 

What we can do, however, for any given system, is to calculate mean 
values of quantities like ii, i.2, i ;-l ii etc. exclusively tor segments Äi ot 
a given length (more exactly: with a length between given limits À. and 
,Ä, + d,Ä,). Such "restricted" mean values (which, the same as ordinary 
mean values of the type indicated by ..----" are based on a process ,......,. 
of counting), will be denoted by i. etc. They are functions of the length 

r-ï. ,......,. 

,Ä, assumed for the segments ,Ä, •. It will be evident that i.-1 = i •• 

From the definition it follows that 

( 41) 
o 

Indeed, when both sides of the equation are multiplied by N, the right 
hand side gives the total of all T. for a group of N segments (either con se­
cutive or chosen at random); on the left hand side the same sum appears 
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split up in partial sums, each referring to a particular length Ä. and each 
having its proper nu mb er of terms N tI (Ä,) dÄ,. 

In a similar way we shall introduce restricted mean values referring 
to a fixed value of the length Ak = ~i+k - ~i' We shall be concerned in 

°1--1* 
particular with TiTi+k • Again we shall have the relation: 

( 42) 
00 
• ~* ~ J h (A k ) Ti Ti+k dAk = Ti Ti+k 

o 
~* 

Restricted mean values of the type Ti Ti+k will form a further set 
of quantities which serve to characterise the statistical features of a given 
system. 

There remains to consider the 1;i' As has been mentioned in section 8, 
when one 1;i has been given all 1;i+k can be calculated. The relation between 
these quantities follows from eq. (26) and can be put into the form: 

" ~ k 

(43) 1;i+k= 1;i+ L Ä,;+h-tT,-Ti+l-" .-Ti+k-l-l T i+k 
h~1 

The assumption that mean values like E1 can be defined, puts a certain 
restriction on the values of the Ä,i and Ti' Indeed, while the assumption 

r-ï ...... 
(27) is sufficient to ensure that 1;i+k = ° wh en 1;i = 0, there is a danger 

that even with a given value of ~ over a certain limited domain of 
~ 

values of i, the mean value of !;1+k for very large k might appear to be 
much larger, in consequence of uncorrelated fluctuations of the Ä,i and Ti' 

lt is difficult to put. the relevant condition into a concise mathematical 
form. lt can be split up into two separate conditions, one referring to 
the Ä,;, the other one to the Ti' but it may be that in this way an unneces­
sary restriction of possibilities is introduced. The condition will turn up 
at a later point of the deductions in a somewhat disguised form (section 
21). Provisionally it is sufficient to work on the basis of the assumption 

that G exists. 
lt might be imagined that the difficulty concerning the 1;i could be 

evaded by assigning, to each segment Ä,i' a definite hinge point. However, 
although the position of the hinge point assigned to a segment may be 
chosen arbitrarily with regard to the centre of that segment, in a series 
of consecutive segments Ài' .1.;+1' Ài+2' ... , the positions of the consecutive 
hinge points must satisfy the relation ... 0';-1 < O'i < O'i+l < 0'i+2 < .... 
This condition entails awkward relations to be fulfilled by the conse­
cutive segments Ä,i' 

The calculations of VI V 2 and vi v2' to be carried out in the following 
sections, will show in which way the various statistical quantities enter 
into the deductions. 

We add that the invariant relations of section 8 (statistical homo­
geneity with respect to a shift in the starting point for i; and invariance 
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with respect to a change of the direction in which i is counted, together 
with a change of sign of Ci) apply likewise to the restricted mean values. 

13. Calculation ot VI V 2• - Provisionally we assume the jumps in the 
curve for v(y) to be discontinuities. The correction to be introduced for the 
"rounding off" will be considered in section 15. We write: 

v2 = VI + {31] - 6, 

where 6 is theamount to be subtracted in connection with the number 
of vertical segments between the points y + 1] and y. We assume that y 

is situated in the segment Ai' so that ~i-l ,;;;;; Y ,;;;;; ~i. If Y + 1] is situated 
between ';Hk and ~Hk+l' the amount to be subtracted is 6 = {3 (-ri + 
+ -rHl + ... + -rHk) (compare fig. 6). 

Fig. 6. 

When we calculate 
Çi 

f dy vdv1 + (31]- t::,.), 
Çi-l 

I 
I 

~+~ 

the first term is the same as occurs in the calculation of v2 and its mean 
value can be obtained from section 9; the second one, apart from the 

constant factor {31], occurs in the calculation of v and consequently gives 
zero in the final result. 

Co ming to the amount 6, its first term {3-ri must be subtracted as soon 
as y + 1] > ';i. When Ai> 1], this will be the case for values of y within 
the range 

';,-1]';;;;; y';;;;; ';i; 

when A, < 1], it will be the case for all values of y within the range 

~'-l (or, .;, - Ai) ,;;;;; y ,;;;;; ~i· 

Giving attention to the values of V corresponding to the limiting values 
of y, the contribution to the integral is found to be: 

- 1 {32 -r.{(C, + 1 -ri)2_(C, + 1 -r,_1])2} for Ai> 1]; 

-1 (32-r.{(C,+ 1 -ri )2_(Ci + 1 -r,-A,)2} for A, < 1]. 
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Since the probabilities or frequencies of the two cases depend on the 
distribution function iI (Ä,) dÄ, for the lengths Ä,i' the mean contribution 
to the integral takes the form: 

00 

_}fJ2 f dÄ, 11 (Ä,) ~;{(Ci + } Ti)2_(Ci + } Ti-17)2}* -
'1 

'1 

-} p f dÄ, 11 (Ä,) ~;{ (Ci + } T i )2- (Cd- } T i - Ä,)21*, 
o 

where use has been made of the notation introduced for restricted mean 
values referring to a particular value of Ä,i- The expression can be trans­
formed into: 

00 

-} p f dÄ, 11 (Ä,) 'T;{(Ci + } Ti )2- (Ci + } Ti-l7)2}* -
o 

'1 

-lP f dÄ,/l(Ä,)~i{(Ci+ }Ti-17)2_(Ci+ } Ti-Ä,)21*. 
o 

We consider the first integral in particular. According to the general 
relation exemplified in (41) it is equal to: 

which af ter some simple reductions yields the result: 

(1) 

It is not necessary to calculate the second integral, sin ce that quantity 
will be included automatically in an expression to be considered presently. 

14. Continuation. - We turn to the consideration of the term fJTHk , 

which must be subtracted as soon as y + 17 > ~Hk. Since y .;;;; ~i' this 
can only occur provided Ak < 17. Again we distinguish between two 
cases: if Ä,i + Ak > 17, the subtraction is to be made only for values of y 
within the range ~Hk -17 < y < ~i; if Ä,i + Ak < 17, so that ~Hk -17 < 
< ~i-l' subtraction must be made for all values of y within the range 

~i-l < y < ~i· 
We introduce the notations: 

(44) T k = } Ti -+- THl + TH2 + ... + T H k-l + } THk 

(44a) P k = ~Hk-Gi-l = T k + } Ti + CHk 

The values of v at the limits of the integration interval can then be 
written: 

in the first case 
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We now need a distribution function FdÀ-., Ak) dÀ-, dAk for the simul­
taneous values of À-, and Ak. The terms dependent on T'+k can appear 
only if Ak < 1]; the limits to be used depend on the difference between 
À- and 1] - Ak. Hence the contribution to the integral, af ter a slight 
re-arrangement, can be written: 

'I 00 

-i{32 I dAk I dÀ-,FdÀ-i,Ak)~i+k{(Pk-Ak)2_(Pk-1])2}*-
(II) 

o ~_ 

'I 'l-Ak 

-iP I dAk I dÀ-, Fk (À-" A k) ~i+d(Pk-1])2- (Pk- A k-À-i)2}* 
o 0 

where the restricted mean values now refer to fixed values of both À-, and 
Ak. Giving attention to the definition of the function Fk(À-" A k ) we see 
that its integral with respect to À-, 'Erom 0 to 00 yields the function MAk). 
The first integral occurring in (II) conseqently transforms into: 

'I 

(lIl) -i{32 I dAktk(Ak)~i+k{(Pk-Ak)2_(Pk-1])2r 
o 

where the restricted mean value simply refers to a fixed value of Ak' 
without reference to a particular value of À-,. 

In consequence of (40) the series obtained by summing (lIl) with 
respect to k will be convergent for every finite value of 1]. It follows that 
we may treat both parts of the expression (II) separately. 

To reduce the second integral to a more convenient form we decrease 
k by one unit. At the same time we replace i by i + 1, which can be done 
without affecting the mean value. By th is process P k (which first became 
Pk-l) is changed into Pk-T,. Further Ak is changed into Ak- 1 = À-i+2 + 
+ ... + À-i+k; and Ak + À-, becomes Ak-l + À-i+l = À-i+l + À-i+2 + ... + 
+ À-i+k = Ak. The expression to be calculated consequently takes the 
form: 

-i{32 f dAJ..~~Î-~À-i+lFk-l (À-i+l' AT.~l) ~i+d (Pk-T.-1])2- (Pk- Ti- A k)2r. 
o 0 

It will be recognised that in this integral we combine all cases in which 
A"-l + Äi+l = Ak takes values from 0 to 1], with the proper probability 
function. Hence the integral can be transformed into: 

'2 i i. 
(IV) -i{32 J dAddAk) Ti+d(Pk-T,-1])2- (Pk -T,-Ak)2} 

o 

We now combine the integrals (lIl) and (IV). When the expressions 
between the { } are worked out, the result of the combination is: 

I
'I ;-----"t * 

(V) + {32 dAk h (A k ) (Ak-1]) TiTi+k 
o 



400 

With k = 1 the integral (IV) re duces to 

'I 

- lP f ditHIli (A'Hl) ~Hl {(CHI + l THl -1'])2 -(CH1 + l THl -itHl)2}*, 

o 

which, by changing i + 1 into i, will be seen to be precisely the quantity 
we had left aside at the end of the preceding section, when we considered 
the contributions derived from fh;. Hence, when the expression (IV) is 
summed with respect to k from k = 1 onward, that quantity is automati­
cally included. The convergence of the sum again follows from (40). 

We introduce the functions: 

(45) 
'I r----ï* 

fPk (1']) = l-2 f dit fd it) Ti THk 

o 

(46) 

The final expres sion for V1V2 is obtained by combining the expression 
(I) of section 11 with (V) as found above. We must divide by l to pass 
from r-------1 mean values to mean values per unit length of the y-axis. 
Making use of (45) and (46) this gives: 

( 47) 

The value of v2 must be taken from (30). - We mention the derivative: 

(48) 

(the derivatives of fPk and Xk drop out). 
Sin ce fk(it) is of order itk-l for small it, it follows that, for small 1'], the 

function fPk is of order 1']k and the function Xk of order 1']k+l. Hence the 
sum in (47) begins with a term in 1']2 and that in (48) with a term in 1']. 

The expressions (47) and (48) must satisfy the condition that V1V 2 and 

?J(V1V2)/()1'] shall vanish for infinite values of 1']. In order to prove this we 
must investigate the sums Erpk and EXk' We will come back to this point 
in section 20. 

15. Oorrection for the rounding olf of the jumps in the lunction v(y). -
The expression (47) is not valid for values of 1'] of the order v/(v_-v+), 
or in the present notation, v/fh i . It cannot be continued analytically 
down to 1'] = 0 and through 1'] = 0 to negative values. Indeed (47) is not 
an even function of 1'] ; when it should be used both for positive and negative 
values, 1'] must be replaced by its absolute value 11']1. 

A correction to (47), leading to a formula valid for very small values 
(positive or negative) of 1'], can be found without difficulty if we may 
assume that the distance between two consecutive jumps in the great 
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majority of cases is large compared with v/thi . The frequency of cases 
where this is otherwise will be determined by tov/th i ; since to can be 
expected to be of order lil, this frequency will be of the order V/fJl2 = 

= vt/l2 5). We assume that this quantity is small compared with unity. 
The correction to be applied to (47) can be found by making use of 

the hyperbolic tangent function indicated in (24). For simplicity we 
take the origin for y at the point ~i; in the neighbourhood of this point 
we write: 

where Ci is a constant. We calculate the integral of V1V2 (in which 17 is 
supposed to be smalI) over the interval - L < y < + L, L being a length 
of order l, but less than both À.i and À.i+ l' The difference between the 
value of the integral for finite v and its value for v = 0, is the correction 
to be applied in connection with the jump at ~i' We pass over the details 
of the calculation; when we may assume that fJ-ei(L -117 D/v = -ei(L­
-117D/vt is sufficiently large (say greater than 10), the result is: 

(49) 

The correction to formula (47) is the mean value of this expression : 

(49a) 

For values of 17 small in comparison with 4vt/l we may develop the ctnh 
function, which gives: 

/J21J 2' 2/Jv""'" /J31JZ '3' 
TI -ei - -l- -ei - 24lv -ei .•• , 

or, making use of eqs. (27) and (31) and re-arranging: 

(49b) _ 2 {J + {J2 l2 1 + w !!... _ /Ja l' 1 + w* t 
v 2 l v 24 l2'" 

There is thus a small correction to the value of v2 given in (30); while if 

(49b) is added to (47) the following expression is obtained for V1V2' valid 
for 17 ~ 4vt/l: 

(50) 

The term with 172 in (47) and the terms depending on the functions f{Jk 

and Xk have been omitted, since, for the values of 17 considered here, 
they are insignificant in comparison with the last term of (50). 

It is now possible to apply eqs. (8) and (9). This gives the result: 

e = Tl 2" fJ3 l2 (1 + w*), 

which is in conformity with (33). 

5) Very smaU values of Ti will be an exception, since the T can only increase 
by coalescence. Hence for estimating orders of magnitude we may replace Ti by 
the mean value Z. 
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16. Oalculation ol vi v2 • - We follow the same procedure as applied 
in sections 13 and 14 and calculate 

;i 
f dy vi (VI + f3'YJ- 6). 

;i-l 

The first term leads to the mean value of v3, which is zero. The second 
term leads to 

(VI) f3'YJ v2 = f33 za {w + [1"2" (1 + w*)} i 
[compare (30) and (31)]. 

The first term in 6, viz. {lT., gives rise to two integrals of a type similar 
to those occurring in section 13. The fust one of these has the form 

00 

- ~ f33 f d).ll ().) ~i {(Ci + t T i )3 - (Ci + t Ti - 'YJ)3( , 
o 

which according to (41) is equal to: 

- ~ f33 ~i {(Ci + t Ti)3 - (Ci + t Ti - 'YJ)3}'. 

Af ter a few reductions this yields the result: 

l-f33 {(~ + t ~ 'YJ - t ~ 'YJ2 + t r:;: 'YJ3} = 

= f33 l4 {_ (w + 1 + 00*) .!L + 1 + 00 ~ _ ! 'YJ8} 
4 l 2 l2 3 la 

(VII) 

The contribution depending on f3Ti+k can be transformed in a similar 
way as was folIo wed in section 14. We pass over the details; the result is 

'I 

_~f33 f dAkldAk) ~i+d(Pk-Ak)3_(Pk-'YJ)3}*-
o 

(VIII) 
'I 

- ~ f33 f dAk h (Ak) ~i+d (Pk- Ti-'YJ)3- (Pk-Ti-Ak)3}* = 
o 

f} i i* r--ï* 
= f33 f dAk Ik (A k ) {2 (Ak-'YJ) Ti Ti+k (Pk-l Ti) - (A~-'YJ2) TiTi+k } 

o 

The first two expressions correspond to the integrals (lIl) and (IV), 
respectively, of section 14; the final expression corresponds to (V). 

According to (44a) P k - 11' i = T k + C i+ k. Making use of the second 
invariant relation, we can replace Ci+k by - Ci' which will not affect the 
mean value. It is thus possible to replace 2(Pk-lTi) by 2Tk+ Ci+k-Ci = 
= T k + Ak [compare (43)]. In this way (VIII) is transformed into 
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We put: 

(51) 
o 

(52) 
'1 

X k (1')) = l-4 J dJ. h (J.)). T k 7:i 7:i+~ * 
o 

Combining the expression (VI) with (VII) and (IX) divided by l, we 

arrive at the following formula for vi V2 : 

(~ =_f33l3[1+w*~_1+wt.+!7J3_ 
1 VI V2 6 l 2 l2 3 za 
J 00 , 7J2 7J I ] 
f - t ([2 CfJk-r: (~k+ Xk) + X k\ 

(53) 

For small "I (small compared with l, but not so small as 4vt/l) the function 
~k is of order "Ik and the function X k of order r;k+l. It follows that the 
expres sion between {} in (53) begins with a term in "1 2 and in (54) with 
a term in "I. Formulae (53) and (54) are not valid down to "I = ° and 
cannot be continued analytically to negative values of "I. 

17. Application ol the lundamental equation (12). - Now that we have 

obtained expressions for VI V2 and viV2 it is possible to make use of equation 
(12) to investigate the change in time of some of the statistical quantities 
we have encountered. 

As was mentioned in section 2, equation (12), when applied to "I = 0, 
brings us back to eq. (4). With E as given by (32), e by (33) and f3 = l/t, 
we obtain (af ter multiplication by 2): 

(55) ~ [~ (_ 1 + w*)] = _ ~ 1 + w* 
dt t2 w + 12 t3 6 

When "I ~ 4vt/l, we can use (12a) instead of eq. (12) and apply 

expressions (47) and (53) for VI V2 and vrv2 respectively. This gives 

(56) 

( ~ [~ (_ + 1 + w*) _ l7J 1 + w + ] = 
'(jt t2 w 12 t2 2 ... 

~ __ ~ I+(()*+ l7J (1+ )_l2<p1 + 
- t3 6 t3 w t3 ..• 

where terms not written out are at least of order "1 2 • Comparison of the 
terms of zero order brings us back to eq. (55), which th us also follows 

from expression (53) for viv2. Comparison of the first order terms gives 
a new relation: 

(57) 
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Having regard to (51) and noting that Tl = t (ii + iHI)' we find: 

(58) 

the restricted mean value referring to À,. _ o. 
By eliminating t-2 from the left hand members we can simplify eqs. 

(55), (57) to: 

(59) ;t [l2 (w + H~;·)J = 2l; cD 

(60) 

18. Direct derivation ol eqs. (59), (60). - It is of interest to deduce 
these equations in a different way, which wil! throw some light on the 
meaning of the terms occurring in them. 

We begin with eq. (60). According to (31) the expression between 

brackets on the left hand si de is equal to ~/l. If we multiply by a large 

length B which is independent of the time, we obtain N ~ (with N = Bil). 
This is equal to the sum of all ii to be found in the length B. Now in con­
sequence of the laws of motion, section 7 (V), the ii do not change in 
the course of time, unless two consecutive i'S coalesce. When this happens 
to ii and iHI' the sum of the squares increases by the amount: 

In order to find the frequency of this process we must determine the 
number of segments À,HI which decrease to zero in the element of time 
dt. Since for small À, we have dÀ,i+l/dt = -(ii + i Hl )/2t. the magnitude 
of À,iH may be at most dt· (ii + i HI )/2t and the number of such seg­
ments in the length B wil! be given by: 

(61) 

Hence the rate of increase of the sum of all ii in B is given by the mean 
i i. 

value N 10 (ii + i Hl) ii i Hl It (restricted mean value for À,i - 0), and 
we obtain: 

,...... i ,. 

d (Ni1)ldt= N 10 (ii+ ii) iiiHl lt. 

Division by the constant length B brings us back to (60). 
To prove (59) we transcribe it in the same way and consider: 

r-t....., r-t 
d [N (ii'~ + 11

2" r;)]ldt = 2N i i mt. 

From section 7 (lIl), we have dCi/dt = Cilt. Hence: 

d (ii mldt = 2 ii mt. 

This already gives us the term on the right hand side. 
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Further, when Ti and TH1 coalesce, Ti and TH1 simply add Up; while 
Ci and CH1 vanish, being replaced by a single quantity equal to: 

CO = Ci - t Ti+1 = CH1 + t Ti 

(compare the end of section 7). It follows that the sum increases by an 
amount which can be written 

= Ti Ti -t-l (t Ti + t TH 1 + Ci ti -Ci) = 0, 

since the expression bet ween ( ) vanishes at the moment of coalescence. 
Hence the coalescence of segments is without inftuence on the value of 
the sum, so that the relation we were considering is proved. 

The same method can be applied to other quantities. 
In the first place we refer to LOITSIANSKY'S invariant Jo for which 

an expression was obtained in section 10. We consider formula (35) for 
Jo and no te that according to the laws of motion (JC i = Ci/t is constant 
so long as coalescence does not take place. Hence the regular develop­
ment of the system will not inftuence the value of Jo' To prove that Jo 
neither changes through the effect of coalescence, we take Jo in the form: 

, I 

i- fJ2 {(Ci + t Ti)2 - (1;i-1 - t T i_ 1)2} I Ti+k Ci+k' 

It is not difficult to show that the sum ITi+kCi+k does not change up on 
coalescence of any two segments. As regards the factor {(Ci + tT i )2-
- (1;i-1 - Ei_1)2}, it does certainly not change up on coalescence of Tk- 1 
and Tk when k < i-I or k > i + 1; neither does it change when k = i-I 
or k = i + 1, sin ce in the first case the value of C;-l - tTi - l • and in the 
second case the value of Ci + tTi is unaffected. Finally. when k = i, the 
factor will disappear from the sum already just before coalescence has 
taken place, on account of the relation Ci + tTi = Ci - 1 - tTi- 1, which 
is valid for Äi -+ 0; while af ter coalescence it is to be dropped altogether 6). 

We finally apply the method to find de/dt. Ifwe multiply by S, we have: 

Se = N~/12 ea. 
In the case of coalescence of Ti and THl> the sum of all T: increases by 
3 (T~ T i+ 1 + Ti TH 12). Sin ce the frequency of this process is determined 
by the expression (61), it is easily found th at 

(62) 

the restricted mean value again referring to Äi -+ O. An equivalent form is: 

d [l2 (1 + *)] 310 '( + )2 ,* (63) dt co = 2l t Ti TH1 Ti TH1 

e) Another proof of the invariance of Jo will be given in the third part of this 
paper (section 26). 
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19. Value ol dljdt. - The expres sion (61), giving the number of cases 
in which segments coalesce. can be used to find the rate of decrease of 
N, which is given by: 

I '* (64) dNjdt=-Nlo(T i +Ti+l) j2t 

In view of what has been observed in section 12 (end of second paragraph), 
i i. ~. 

we may replace t (T,+Ti+l) by Ti . The symmetrical notation used 
in (64), however, has been retained on account of its analogy with (60) 
and (63). 

Since N = S jl, S being a constant length, we find: 

(65) 

The restricted mean value refers to À-, ~ o. 
We can apply this result to eliminate dljdt from equations (60), (63) 

and (59). This gives 

(66) 

(67) 

(68) 

These equations bring to light a few of the features of the system which 
determine the change with time of its statistical character. For instance, 
if we should start with a case in which all Ti originally had the same 
value, equal to 1 (so that w would be zero), while the length ofthe segments 
À-, was distributed at random, equation (66) would give: 

d(l + w)jdt = 10 lft. 
,..., 

This would mean that an increase of the ratio TrfZ2 would immediately 
set in, which is, of course, to be expected. 

It may be supposed that a statistical state can be reached with a pattern 
independent of the time. This supposition is made by those authors 
who speak of "self-preserving" correlation functions. For such a I:!tate 
eqs. (66) - (68) should have zero right hand members. We shall come 
back to this subject in section 24. 

(Ta be continued). 


