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In 1944 I gave a sketch of some parts of negationless intuitionistic 
mathematics in these Proceedings; afterwards I started on a more com­
plete and systematic treatment 1). This note is a sequal to it. As in the 
meantime, however, many remarks and objections reached me, I p~eface 
this note by a concise exposition of my point of view and some explanations 
to the second note. 

In 1947 Prof. L. E. J. BROUWER gave a formulation of the directives 
of intuitionistic mathematics 2). It is remarkable that negation does not 
occur in an explicit way, so one might be inclined to believe negationless 
mathematics to be a consequence of this formulation. The notion of 
species, however, is introduced in this way (translated from the Dutch 
text): "Finally in this construction of mathematics at any stage pro­
perties that can be supposed to hold for mathematical conceivabilities 
already obtained are allowed to be added as new mathematical con­
ceivabilities under the name of species". By this formulation it is possible 
that there are properties that can be supposed to hold for mathematical 
conceivabilities already obtained but that are not known to be true. 
With it negation and null-species are introduced simultaneously but 
at the cost of evidence. Whatever are the properties that can be supposed 1 
What other criterion could there be than 'to hold for mathematical con­
ceivabilities already obtained' 1 In the definition of the notion of species 
the words "can be supposed" should be replaced by "are known". One 
should restrict oneself in intuitionistic mathematics to mathematical con­
ceivabilities and properties of those mathematical conceivabilities and one 
should not make suppositions of which one does not know whether it is 
possible to fulfil them. (The well-known turn in mathematics: "Suppose 
ABC to be rectangular" seems to be a supposition, but mostly means: 
"Consider a rectangular triangle ABC"). 

ad § 1. 1. Af ter the introduction of the natural numbers 1, 2, 3 the 

1) G. F. C. GRISS, Negatieloze intuïtionistische wiskunde. Versl. Ned. Akad. 
v. Wetensch., S3, (1944). 

Negationless intuitionistic mathematics. Proc. Kon. Ned. Akad. v. Wetensch., 
49, (1946). 

2) L. E. J. BROUWER, Richtlijnen der intuïtionistische wiskunde. Proc. Kon. 
Ned. Akad. v. Wetensch., SO, (1947). 



457 

natural number n ' next to the natural number n was introduced by 
means of induction as follows: 

"lf, in this way, we have proceeded to En (1, 2, ... , n), we can again 
imagine an element n ' , remaining the same, n ' = n ' , and distinguishable 
from each element p of En (1,2, ... , n), in formula n ' *- p, p *- n'. 
They form the set En' (1, 2, ... , n' )." 

En' is called the sum of En and n' , in other words: An element of En' 
belongs to En or is n'. In this way the disjunction is defined in a particular 
case. It is evident the disjunction a or b in the usual meaning (the assertion 
a is true or the assertion b is true), does not occur in negationless mathe­
matics, because there is no question of assertions that are not true. In 
general our definition of disjunction runs as follows: a or b is true for all 
elements ot the set V means that the property a holds for a subspecies V' 
and property b holds for a subspec1:es V", V being the sum of v' and V". 

ad § 1. 2. In accordance with the construction of natural numbers 
the proofs of properties of those numbers are always given by means 
of induction, until a system of properties is found, that can serve as a 
starting point of an axiomatic theory. At the time I used the disjunction 
in the proofs of the two properties concerning the relations of identity 
and distinguishability. Now we will show, how it is possible to avoid 
the use of disjunction in accordance with the remark made ad § 1. 1. 
For that purpose I formulate the first property: 1 f b is an element of 
Em (1, 2, ... , m), then b together with the elements of E", that are 
distinguishable from b form Em. 

Proof: The property holds for E 2• Suppose the proof has proceeded 
to En. 1 ) Consider first an element b of En. The elements of En' that differ 
from bare n' and those elements of En th at differ from b. The latter form 
together with b the set En> and En together with n' forms En" 2) Now 
consider b = n'. In this case the elements differing from b form the set 
En' so together with b the set En" So the property holds for the elements 
of En and for n' , so for all elements of En" 

The avoiding of the disjunction has little influence on the proof of the 
second property. 

1f for the elements a and b of Em holds: a*- c for each c *- b, then a = b. 
Proof: The property holds for E 2 • Suppose the proof has proceeded 

to En' 1) lf b = n ' , then a is distinguishable from each element of En' so 
a = n' and a = b. 2) b is element of En; choose c = n' , then also a is an 
element of En' so a = b. The proof has been delivered for all elements 
of En and for n ' , so for all elements of En" 

Oontinuation of § 1. 

4. The set A (1,2, ... ). 
In consequence of its construction A is the sum of En and the species 

An consisting of those elements of A th at are distinguishable from 
30 
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the elements of En. Suppose an element of A to be distinguishable from all 
elements of An' then it is contained in En; in the case it is distinguishable 
from all elements of En it is an element of An. We now again give the 
proofs of property VI and VII of nr 2. 

Proof of VI: A is the sum of Eb and the elements of A that are 
distinguishable from those of Eb' Eb is the sum of band the elements of 
Eb distinguishable from b, so A is the sum of band the elements of 
A distinguishable from b. 

Proof of VII: a is distinguishable from all elements of Ab thus 
is an element of Eb' Rence a = b. 

For the definition and properties of the order-relation in the set A one 
should consult nr 3. The modifications to be made are only slight ones. 

5. Finite and denumerable inlinite species. 

A property of a natural number defines the species of natural numbers 
having this property. The species may consist of a single element a, e.g. 
the species of natural numbers identical with a. From the definition it 
follows that the species contains at least one element, in accordance 
with the remark made at the beginning. In particular every set is a species. 

In the general theory of sets by BROUWER "verschieden" (different) 
means tacitly 'not the same'. Therefore this part of intuitionistic mathe­
matics bears a paramount negative character. 

A species A is said to be in one-to-one correspondance with a species B 
if to each element of A corresponds a single element of B, while of each 
element of B it is known to what element of A it corresponds. Then also 
B is in one-to-one correspondance with A. To two distinguishable elements 
of A correspond two distinguishable elements of B, and reversely. A and 
Bare said to be of the same cardinal. Two one-to-one correspondances 
applied one af ter another give again a one-to-one correspondance. 

A species A is mapped uniquely onto a species B, if to each element 
of A corresponds a single element of B. Then two distinguishable elements 
of B correspond to distinguishable elements of A. 

Property: 1/ Ep and Eq have the same cardinal, then p = q. 
Proof: The property holds for p = 2. Suppose the proof has pro­

ceeded to n, that means from a one-to-one correspondance of En onto Er 
it follows r = n, while a certain one-to-one correspondance of En' onto 
Em' is given. If m' corresponds to n' then Em and En have the same cardinal, 
so m = n, thus m' = n'. 

If n' corresponds to the element a of Em and if m' corresponds to b 
of En' then we replace the one-to-one correspondance by another one in 
which m' corresponds to n ' and a to b. Then again Em and En have the 
same cardinal, thus m = n, so m' = n'. 

We now define: A finite species, of cardinal n, is a species having the 
same cardinal as E". The cardinal n of a finite species E is distinguishable 
from, less than or greater than the cardinal m of E', according to n #- m, 
n <m, n> m. 
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A denumerable infinite species IS a species having the same cardinal 
as the set of natural numbers. 

Property: 11 the linite species E has the same cardinal as a pmper 
subspecies ol the linite species E', then the cardinal ol E is less than that 
of E'. 

Proof: Suppose E has the cardinal n, then also a proper subspecies 
Eli of E' has the cardinal n. Now we map the species E' in such a way 
onto Em' that Eli is mapped onto En- E' contains an element that is 
distinguishable from each element of Eli. This element now is mapped 
onto an element of Em' that is distinguishable from each element of En-

Likewise the reverse holds: In the case the cardinal of a linite species E 
is less than that ol a linite species E ' , E has the same cardinal as a lJroper 
subspecies ol E'. 

AIso: If E is a finite subspecies of the set A of natural numbers, then 
it is possible to determine a number m, such that E is a subspecies of Em; 
so E is a proper subspecies of A. 

Each linite species has the same cardinal as a proper subspecies of a 
denumerable inlinite species. 

A species containing at least three mutually distinguishable elements 
is called ordered, if there exists between elements a and b of the species 
a relation a < b (b> a), satisfying the following conditions : 

Ol a #- b --+ a < b or b < a 

0z a < b --+ a #- b 

Oa a < band b < c --+ a < c. 

(The second condition replaces the negative condition a = b, a < b 
and b < a exclude one another). 

One easily proves by induction: 

A linite ordered species contains a first and a final element. Two fini te 
ordered species having the same cardinal number have the same ordinal 
number. 

6. The fundamental operations. 

We mention only. 
Definition of addition: Adding 1 is a transformation that to each 

number let correspond its successor; adding n' means adding n and 
then 1, in formula n+ l=n' and a+ (n+ 1)= (a+n)+ 1. 

The transformation is unique: 

a = b --+ a + c = b + c and a + c #- b + c --+ a #- b. 

Properties : 

Al a+ (b+ c)= (a+ b)+ c 

Az a+ b= b+ a 

Aa a #- b --+ a + c #- b + c. 
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These are the axioms of any commutative group. Characteristic for 
natural numbers is: 

and for the order-relation 

0 4 a > b -+ a + e > b + e. 

All these properties can easily be proved with induction. Further pro­
perties can be deduced from them, without using induction in an explicit 
way. 

Property: a + b =1= a. 
Proof: e + b =1= 1 -+ 1 + b =1= 1 -+ a + 1 + b =1= a + 1 -+ a + b =1= &, 

(N, Al> A2' Aa). 
Property: a+ e= b+ e-+ a= b. 
Proof: Take d =1= b, then d + e =1= b + e -+ d + e =1= a + e -+ d =1= a. 

So a =1= d for any d =1= b, thus a = b (Aa, VI). 
Property: a + b > a. 
Pro of : b > 1 -+ a + b > a + 1 -+ a + b > a (nr 3, 0 4 ). 

Property: a + d> b + d -+ a > b. 
Proof: a + d > b + d -+ a + d =1= b + d -+ a =1= b. 

Take e < b, then e + d < b + d < a + d -+ e + d =1= a + d -+ e =1= a. 
a =1= band e =1= a for each e < b -+ a > b (nr 3). 

Definition: Multiplication is a unique transformation defined by 

a X 1 = a and a (n + 1) = an + a, 

so a = b -+ ac = be and ac =1= be -+ a =1= b. 

Properties : 
M l a(be) = (ab)e. 

M 2 ah = ba. 

Ma a(b+ e)= ah+ ac. 

M4 a =1= b -+ ae =1= be. 

0 5 a > b -+ ae > be. 

These properties, again, can easily be proved by means of induction. 
Further 

ae = be -+ a = b. 

ae > be -+ a > b. 

Property: z =1= 1 -+ xz =1= l. 
Proof: z =1= 1 -+ z > 1 -+ xz > x -+ xz > 1 -+ xz =1= 1 (nr 3, 0 6 ). 

Property: xy= 1-+ x= 1 and y= 1. 
Proof: Take z =1= 1 -+ xz =1= 1 -+ xz =1= xy -+ Z =1= y. So z =1= y for any 

z =1= 1 -+ Y = 1. Then x = l. 
Definition of subtraction. If for three numbers a, band v 

holds v + a = b, v is called the difference between band a. 
Definition: Ifn =1= 1 we mean by 'n diminishing by 1': determining 
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the predeeessor 'n (nr 3); 'n = n - l. If a < band a =i=- 1 we mean by 
'b diminishing by a': diminishing by 1 and af ter that by 'a; b - a = 
='b-'a. 

Property: If b> a, b - a is the differenee between band a. 
Proof: (b -1) + 1 ='b + 1 = b. Supposetheproofhasproeeeded to 'a. 

(b-a)+ a= ('b-'a)+ ('a+ 1)= {( 'b-'a)+ 'a}+ 1= 'b+ l=b. 
Property: There is only one differenee between band a (b> a). 
Proof: If v+ a= band w+ a= b, then v+ a= w+ a, so v= w. 
We first proved that if b> a at least one value ean be found being 

the differenee b - a. It need not be told separately that no sueh value 
exists in the case b < a, for if a differenee b - a exists, then v + a = b 
thus b > a and then b =i=- c for eaeh c < a. 

That there exists at most one value for the differenee b - a does not 
mean that there are no two sueh values but that one always finds the 
same value. 

Definition of division: If for three numbers a, band q holds 
q a = b, q is ealled the quotient of band a. 

Property: If a and b have a quotient, there is only one quotient. 
Property: If a < b (a =i=- 1) two nu mb ers q and r < a ean be deter­

mined in su eh a way that b = qa or b = qa + r. 
Proof: If b = a, th en b = l. a. Let the proof have proeeeded to 

b = n> a, then n = qa or n = qa + r (r < a). So 
n' = qa + 1 (1 < a) or n' = qa + r' with r' < a or r' < a; in the latter 
case n' = qa + a = (q + l)a. 

On this is founded EUCLIDES' algorithm and the theory of division 
and separation in primefactors whieh I only give in outline. 

Definition: a and bare ealled mutually divisible if it is possible to 
determine d =i=- 1, pand q sueh tha t a = pd and b = qd; a and bare ealled 
mutually prime if for eaeh e =i=- 1, pand q holds a =i=- pc or b =i=- qe. 

Property: Two numbers are either mutually prime or mutually 
divisible. 

Property: If a and bare mutually prime and e and d are mutually 
divisible then (a, b) is distinguishable from (e, d). 

Definition: a is divisible ifit is possible to determine b =i=- 1 and c =i=- 1 
in su eh a way that a = be; a is prime if a =i=- be for eaeh b =i=- 1 and e =i=- l. 

Property: A number is either prime or divisible. 
Property: A divisible numbers ean be faetorized in a unique way 

into primefaetors. 
Property: Eaeh prime number has an immediately sueeeeding prime 

number. 

§ 2. The rational number. 

l. The number 0. 

We add to the set A (1,2, ... ) of natural numbers the element 0, 
distinguishable from all elements of A. How has that to be done? 
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One may interrupt the enumeration of the elements of A and inter­
'Sperse the number 0. In the case no operations and orderrelations have 
been introduced, this will bring forth nothing new. We define however, 

0< a, a+ 0= 0+ a= a and a.O= O.a= 0. 

One might also begin with ° and add the set of natural numbers. Pro­
perly speaking one has to begin all over again and that with (0, 1, 2, ... ), 
define the fundamental operations and order-relations, noticing the 
subset (1, 2, ... ) is in one-to-one accordance with the set of natural 
numbers with preservation of fundamental operations and order-relations. 
The properties with proofs concerning order-relations and operations of 
natural numbers remain valid with slight modifications. It is evident 
the number ° has nothing to do with a cardinalnumber. (no more than 
the negative number -lor the fraction 1 leads to a cardinal number). 

2. Entire numbers. 
Introduce in accordance with nr 1 (0, 1, - 1, 2, - 2, ... ). 
Order relations: ° < 1, - 1 < 0, - 1 < 1, n' > each element of 

(0, 1, ... , - n) and - n' < each element of (0, 1, ... , n'). 
The further theory of entire numbers does not offer any difficulty. 
Negative numbers have as little to do with negation as the number ° 

with cardinal numbers. 

3. Rational numbers. 
I will treat the theory of rational numbers more fully as it has to serve 

as a foundation of the theory of real numbers. If one defines a fraction 
as a pair of entire numbers the fractions 2/3 and 3/2 ought to be identified. 
One distinguishes them, however, tacitly by their position. If one defines 
more precisely by calling an 'ordered' pair of entire numbers a fraction, 
it is not yet evident how to distinguish 2/2 from 2. One must be able to 
distinguish in each pair the two numbers, e.g. by indices 1 and 2 or in 
principle more simply, by writing the numerator in arabic figures and 
the denominator in roman figures. We choose the manner of writing 51 

and 42, where these symbols are to be considered as one sign. 
Definition: We construct a series of natural numbers 12, 22 etc. 

and a series of entire numbers Ov - Iv Iv etc. where each element of 
the second series is distinguishable from each element of the first series. 
Each pair of numbers originating by choosing one number from the 
first and another one from the second series is called a fraction. The 
nu mb er of the first series is called denumerator, that from the second 
one numerator. 

Two fractions (~, b2 ) and (cv d2 ) are called the same if ~ = Cl and 
b2 = d2 ; they are distinguishable if at least ~ #- Cl or b2 #- d2 • This definition 
is in accordance with a general definition of identity ' and distinguish­
ability that will be given later on. 

Much more important is the notion equal and different for fractions. 
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For this purpose we first arrange to calculate with numerators and 
denumerators by suppressing the indices. We shall denote the relations 
of identity and distinguishability by - and oj:., respectively and the 
relations of equality and difference by = and -::j::. and define 

(al b2 ) = (Cl d2 ) if ad - bc 

(al b2) -::j::. (el 12) if al oj:. be. 

These relations satisfy the properties I - VII of § 1. 2. 
We give the proofs for V and VI. 
V. (al b2) = (Cl d2) and (Cl d2) -::j::. (el 12) -* ad bc and el oj:. ed -* ad! 
ebI and cbl oj:. ebd -* ad! oj:. ebd -* al oj:. eb -* (al b2 ) -::j::. (el 12)' 

VI. (al b2) -::j::. (PI q2) for each (PI q2) -::j::. (Cl d2) -* 

aq oj:. bp for each pand q for that pd oj:. pc -* (for q - db) 
adb oj:. bp for each p for that pd oj:. dbc -* 

ad oj:. p for each p oj:. bc -* ad bc -* (al b2 ) = (Cl d2 ). 

We shall always call the relations a = (3 and a -::j::. y satisfying the 
conditions I - V relations of equality and difference, if a = (3 -* a = (3 
and a -::j::. y -* a oj:. y. Sometimes one means by a 'fraction' the species 
of all mutually equal fractions. In virtue of the developments in § 4 of 
my first note on negationless mathematics, for 'fractions' an identity­
relation and distinguishability-relation holds satisfying conditions I - VII. 




