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GyvrA DpE Sz. Nacy proved some theorems on the location of zeros
of polynomials [1]. These theorems are generalisations of results obtained
by G. Szee6 [2]. -

The present note deals with similar problems (Theorems I, IT, III and
IV). Theorem V is a generalisation of a theorem of the first mentioned
author, see [3]. We prove the following

Theorem 1.
Let the polynomial

(@)= (z2—ay) (z—a,) ... (2—a,)
have all its zeros in the circle |2— a| < R, and let the polynomial
g (2) = (2—by) (2—by) ... (z—b,)

have no zero in the circle |z—a| <o, ¢ < R.
Then no polynomial

h(@=24f(R)—g @), |A <t 0<t<%,
has a zero in the circle
— Rt
(1) lz—a| <r=477F (<o)
Proof.
Every point 2z, with & (zy) 7 0 satisfies
9('-0)
Now we have for every point z, of the region (1)
|zo—ay| < |2p—a|+ |az—a| <r+ R,
and
|20—bi| > |b—a| —|zp—a| > ¢—r,
so that
f@) | _ 71 |20— 2k r+Bye_ 1 1
g (2) _,H zg— by (e—r) =% < [4]
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This completes the proof of Theorem I.
A generalisation of Theorem I is

Theorem II.
Let the polynomial

(@)= (z—a) (z—a,)...(2—a,)
have all its zeros in the circle |z — a| < g,, and let the polynomial
g () = (2—b,) (2—by) . ..(2—0,)
have no zero in the circle
|z—B| < @2, 01> 02, |a—pf| < min (0;—gq, 05)-

Then mo polynomial

h@)=af@)—gla), |afh < 2=z,
has a zero in the region
(2) | A" - |z—a|+ |z—B| < ea—e01|A[™

Proof. We put |2g—a|=r, and |2y— | =7, where z, is a point
of the region (2). From our assumptions it follows that 2, is an interior
point of the circle |z — 8| < g,

Now we have

|20—ax| <|20—ea|+ |ay—a| <r+ oy
and
|2o—bi| = |b—B| —|20—B| > 02—
so that
29— ag Lt o, f (29) (7'1 +91)“ < 1
2q— by <92—”'z’ o |g(zo) 02— Ty \li'l’

and from these last inequalities it follows that z, is not a zero of A(z).

Theorem III.
Let G, be a half-plane containing the zeros of the polynomial

f(2)=(z—a,) (z—ap) ... (2—a,).
Let G, be the complementary half-plane containing the zeros of the polynomial
g (2) = (z—by) (z—by) ... (2—b,),

and let I be the boundary line of G and G,.
Let a and B be two points of G, with

|a—B| > d, where d= max |a—ayl|.
k=1,..,n

Let P be the parabola with B as focus and with 1 as directriz, and let H
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be the hyperbola with foci at a and B, and with the major axis d. Then the
polynomial

h(z)=1f(2)+ g (2)
has mo zero in the region R, the common part of the interior of P, and the
interior of H containing a.

Remarks. 1. The set of points from which no tangent can be drawn
to a given conic section is said to be the interior of that conic section.

2. If we choose g on the perpendicular from a on I, then the set of
points R is not empty.

Proof. We denote by 2, an arbitrary point of R.
It is obvious, that

|2o—b| > |2o—8],

and
|zo—ai| < |2o—al|+ |ar—a| < |2zg—al|+d.
Hence
flzo)| 2o— ag |20—al| + d\*
®) g(z) | oy 12— b <( [20— 8] ) <&

where the last inequality follows from
|20—B| —|2g—a|>d
From (3) we see that z, is no zero of & (2).

Theorem 1IV.
Let G, be a half-plane containing the zeros of the polynomial

[ (@)= (z—ay) (z—a,) . . . (2—a,).

Let G, be the complementary half-plane containing the points a and a, and
let I be the boundary line of G, and G,.

- Let P be the parabola with o as focus and l as directriz. Let C be the circle
of Apollonius for the points a and a, with ratio t (0 <t < 1), and of which
a 18 an tnterior point (this means that C is the set of points z with

|z—a|=1t|z—al).
Let g(z) be the polynomial

g (2) = (z—a)".
Then no polynomial

h2)=g@ + Af(2), |[A|=t0<t<],

has a zero in the region R, which the interiors of P and C have in common.

Proof. We denote by z, an arbitrary point of R.
Then
|20—ax| > |zp—al, and |z,—a| <t|z—al,
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so that

g (20)
f (2¢)

2Zg—a
2Zp—a

"< <Al

<

n

2p—a
k=1 20— ag

Hence
|g(z0)| < Mf(zo)!-

This means that z, is no zero of & (z).

Theorem V.
Let
/(z) = (z_all) (z_‘az) s e e (z—a,n)’
with a,= X+ tyy (k=1,...,n),
g (2) = (z—b,) (z—b,) . .. (z—0,),
Wlt'h bk=xk+1’y;~’ yk> yl‘c (k=1’--°1n)7
_ 1) (z—a)(z—a,)...(2—an)
F&)= = =) =t b’
F'(5)=0, F()#0, =&+ in.
Then :
(*) If the intervals
(4) ?/1.>?/>?/z'c (k=1’2s""n)

have an interval I in common, n is not an interior point of I.
(**)  ts mot a point of the region R, which the interiors of the hyper-
bolas H,

(E—z)?—(—y) y—y)=0 (k=1,...,n)

have in common. { is an inlerior point of one H, at least, and an exterior
point of one the other H, at least.
(***) If (k=1,...,n)

2my =y + Y,

then { is not a point of the regions R, and R,, the common parts of the regions

(x—=) (y—my) > 0,

and
(x—x) (y—my) <O,
respectively.
Proof.
F'(2) M——I(f-):i{ 1 1) _
F (2) () g() S \lz—ar z—b
; % Ye— Yy, .
i le—m+i(y—y{z—2 +ily—yp}
1; % yk_"yk

s {@—a)?— (y—u) (—y)} + i (2xy—aye— 2y, — 2y o + Teyr + Ty}
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If now {=¢&+ iy, F'({)=0 and F({) 7~ 0, then

F(E) _ _ L Bilye—w) | ;& Anlgr—wr) _
F@) ZAk'f'”'Bk ,,Zl Ai+ BZ 2,21 A2+ B:
Ay (ye—ys) " B (yr—yr)
5 == ="=0, ———=0,
®) R - RPN F
with
A= (§—x)2 — (n—Yx) (n—uz)»
and

B,=28n—Ey,—Eyi—2na+ 2y + Yy

If ¢ is a point of R, then the inequalities
(6) 4,>0 (k=1,...,n)

hold. From (6) and our assumption y;, — y; > 0 (k=
that the first equality of (5) does not hold.
So (**) is proved.
(*) is an immediate consequence of (**).
Furthermore we have

L Be(ye—yn) _ & (gr—yp) (=) Cn—ye—ys) _

x=1 A%+ B k=1 A} + B}

Z (yr— &) (E— ) (7 — my)
k=1 A% + B}

., n) it follows

It can easily be seen that the last expression does not vanish if { is

a point of R,, or R,. This concludes the proof of (***),
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