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GYULA DE SZ. NAGY proved some theorems on the location of zeros 
of polynomials [1]. These theorems ar(generalisations of results obtained 
by G. SZEGÖ [2] .. 

The present note deals with similar problems (Theorems I, 11, 111 and 
IV). Theorem V is a generalisation of a theorem of the first mentioned 
author, see [3]. We prove the following 

Theorem I. 
Let the polynomial 

t (z) = (z-Ilt) (z-~) ... (z-a,,) 

have all its zer08 in the circle I z - a I < R, and let the polynomial 

g (z) = (z-b1) (z-b2) ••• (z-b,,) 

have no zero in the circle I z - a I < e, e < R. 
Then no polynomial 

h (z) = ;, t (z) - g (z), 1;'1 < t", 0 < t < ~ , 
kas a zero in the circle 

(1) I e-Rt 
Iz-a < r= T+t « e)· 

Proof. 
Every point Zo with h (zo) =F 0 satisfies 

I ~ ~::~ I =F I ;'1· 
Now we have for every point Zo of the region (1) 

Izo-akl < Izo-al + lak-al < r+ R, 
and 

so that 
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This completes the pro of of Theorem 1. 
A generalisation of Theorem I is 

Theorem 11. 
Let the polynomial 

I (z) = (Z-a,l) (Z-a,2) ... (z-a,,,) 

have all its zeros in the circle I z - a I .,;;; el> and let the polynomial 

g (z) = (z-bl ) (z-b2 ) ••• (z-b,,) 

have no zero in the circle 

Iz-,81 ";;;e2' el>e2' la-,81 < min (el-e2,e2)' 
Then no polynomial 

h (z) = ;'1 (z) _ g (z), 1;'1'/" < eB - ~~-al, 

has a zero in the region 

(2) 

Proof. We put Izo - al = rl and Izo -,81 = r2 , where Zo is a point 
of the region (2). From our assumptions it follows that Zo is an interior 
point of the circle I z -,81 .,;;; e2' 

Now we have 

and 

so that 

I Zo- a" I < rl + el , and I f (zo) I < (rl + el)" .,;;; ~, 
Zo- bk ea- ra g (~o) ea- ra P·I 

and from these last inequalities it follows that Zo is not a zero of h(z). 

Theorem IIl. 
Let Gl be a hall-plane containing the zeros ol the polynomial 

Let G2 be the complementary hall-plane containing the zeros ol the polynomial 

and let 1 be the boundary line ol Gl and G2 • 

Let a and ,8 be two points ol Gl with 

la-,8I> d, where d= max Ia-aki. 
k~l •.. .• " 

Let P be the parabola with ,8 as locus and with 1 as directrix, and let H 
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be the hyperbola with foci at a and (J, and with the major axis d. Then the 
polynomial 

h (z) = f (z) + g (z) 

kas no zero in the region R, the common part of the interior of P, and the 
interior of H containing a. 

Remarks. 1. The set of points from which no tangent can be drawn 
to a given conic section is said to be the interior of that conic section. 

2. If we choose (J on the perpendicular from a on l, then the set of 
points R is not empty. 

Proof. We denote by Zo an arbitrary point of R. 
It is obvious, that 

and 

Hence 

(3) I f (zo) I = TI I Zo - Bk I < (I Zo - a I + d)n < 1, 
g (zo) k-l Zo- bk IZo-PI 

where the last inequality follows from 

Izo-(JI-Izo-al> d 

From (3) we see that Zo is no zero of h (z). 

Theorem IV. 
Let G1 be a half-plane containing the zeros of the polynomial 

f (z) = (z-a1) (z-a2) ••• (z-~). 

Let G2 be the complementary half-plane containing the points a and a, and 
let l be the boundary line of G1 and G2• 

Let P be the parabola with a as focus and l as directrix. Let C be the circle 
of Apollonius for the points a and a, with ratio t (0 < t < 1), and of which 
a is an interior point (this means that C is the set of points z with 

Iz-al=tlz-al). 

Let g(z) be the polynomial 

g (z) = (z-a)n. 
Then no polynomial 

h (z) = g (z) + ;, f (z), I;' 1= tn, 0 < t < I, 

kas a zero in the region R, which the interiors of P and C have in common. 

Proof. We denote by Zo an arbitrary point of R. 
Then 
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so that 

Hence 

This means that Zo is no zero of h (z). 

Theorem V. 
Let 

with 

f (z) = (z-a,) (Z-a,2) ... (z-a,n), 

a,k= xk+ iYk (k= 1, . .. , n), 

g (z) = (z-b1) (z-b2) ... (z-bn), 

with bk = xk + iy~, Yk> Y; (k= 1, ... , n), 

F( ) - U=l- (z-al)(z-aZ)···(z-an ) 
Z - - , 

g (z) (z- bI) (z- bz) ..• (z- bn) 

F' (C) = 0, F (C) =1= 0, ,= ç + i 'fJ. 

Then: 
(*) 1f the intervals 

(4) (k = 1,2, ... , n) 

have an interval 1 in common, 'fJ is not an interior point of 1. 
(**) 'is not a point of the region R, which the interiors of the hyper­

bolus Hk 

(k = 1, ... , n) 

have in common. C is an interior JJoint of one H k at least, and an exterior 
point of one the other Hk at least. 

(***) 1f (k = 1, ... , n) 

2 m k = Yk+ y~, 

then , is not a 1Joint of the regions Rl and R2 , the common parts of the regions 

and 
(x-x,,) (y-mk) > 0, 

(x-xk ) (y-mk ) < 0, 
respectively. 

Proof. 
F'(z) f'(z) g'(z) n {lIl 
F(z)=TfZj-g(z) = k~l z-ak-z-bk = 

• n Yk-Y; 

~ k~l {x-xk+i(Y-Yk)}{X-Xk+i(y-y~)} 
.~ ~-~ 
~ k7: I {(X- Xk)Z - (Y- Yk) (Y- Y;)} + i {2 xY -XYk- xY~ - 2Y Xk + xkYk + XkY~} 
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If now t; = e + i'YJ, F'(t;) = 0 and F(t;) -=I=- 0, then 

(5) 

with 

and 
Bk= 2e'YJ-eYk-ey~-2'YJXk+ XkYk + xkY;· 

If t; is a point of R, then the inequalities 

(6) (k = 1, ... ,n) 

hold. From (6) and our assumption Yk - Y; > 0 (k = 1, ... , n) it follows 
that the first equality of (5) does not hold. 

So (**) is proved. 
(*) is an immediate consequence of (**). 
Furthermore we have 

It can easily be seen that the last expression does not vanish if t; is 
a point of Rl> or R 2• This concludes the pro of of (***). 
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