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20. Further investigation of the correlation function vy, — In Part IT
expressions have been constructed for the correlation functions v,

and v2v,. These expressions have been applied to investigate some conse-
quences of the fundamental equation (12), particular attention being
given to values of 7 small in comparison with the mean length I of the
segments 2,. In the results an important part was played by the statistical
parameter f,= lim f,(A) for 4 — 0, together with certain mean values
referring to 4 — 0.

We now turn to some long distance relations. In the first place we

will show that the expression (47) for v;v, and its derivative (48) vanish
for large values of 7.
We write

(69) [dat =g

8o that g, measures the probability for A, to be less than 5 [A; is the
sum of the lengths of k£ consecutive segments 4;, from 4, to 4, inclusive;
compare (37)]. It will be evident that the expression:

) K ] ™ 1%
(70) B2 o= fdlsz(l) TiTitk
k=1 0 1
combines all cases defined by the inequalities
0 <Ziss <7
0 <21+ Aise <7

0 <Ajpr1+ Aipet Aips <7, ete.,

each case with its proper frequency of occurrence. Without omitting
any one we can re-arrange these cases in such a way that we first consider
the class for which

Aiv1 < <Aiprt Aiges

*) Continued from these Proceedings, p. 393 —406. — In eq. (50), p. 401, the
last factor should be %2/I3, the same as in eq. (49b).
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next the class for which
A1t Aia < <Aipr1+ Aipa+ Aigs
(which naturally entails 4;,, < #); then the class for which
A1t At Aivs < <Ajpr+ Ao+ Ais 1 Aivg

(which entails 4,.; <#; 4,4+ %12 <7), etc. The probabilities to be
assigned to the classes thus distinguished (that is, the relative numbers
of cases falling in any one of them) are given by

(4) J1—92 5 92—93 5 9Gz—Gas ---
It follows from (36) that
(B) ? (Ge—Gr+1) =1

if n is sufficiently large.
We take those terms of the sum (70) which refer to the particular
class defined by

(C) A <m < Mgy

and add together the quantities 7;7;,,, 7;7i;s T;Ti+s... OcCcurring in

these terms. The contribution obtained in this way can be written:
—T#*

(D) (9x—Gi+1) T T

where

(M) Ti=vin+ttuet .+ rp=T—3t+ it =0in—0;

[compare (44)], while the new type of restricted mean values refers to
the cases satisfying the inequalities (C). When (D) is summed with respect.
to k from k=1 to infinity, we obtain the expression (70).

We write:

(72) Ty=n—4%v+8+0
(compare fig. 7). Since T+ ;.. — ;= A;, so that
To=M—dni+ L+ dvi— Lo
we find:
0= A—n+ }vie—Cive= desr—1— 3 Tisir1—Civnsr
Hence in consequence of (C) § satisfies the inequalities:
— btk —Ciren <0 <d7i—Cigae

When 7 is sufficiently large, g, will practically be equal to 1 and
gx — 9gr+1 =0, for all k¥ which are small compared with 7/l. Terms with
small values of k consequently will play an insignificant part in the sum
of the quantities (D). We can safely assume that in all significant terms 6

will be completely independent of z; so that

™ T*xx% ok

(72a) 7,0 =7,-0 =0
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For later use we add the formula:

T 1%x%x r— T %%

*% )
00 =70 =3{(riient G+ Grie—Cid®}
which for large n we can assume to become equal to its ordinary mean
value, so that

(726) T =L+ T = PG+ Ay (L o)
Tk a1 + Siekat
Ak"'i \
—-{fi»,u--'sioJ:—
Ak
/ ”, /
¥y
L/ Jiek ! 3/
-3 ~ ieket
.;._____T& = Tigy * oo+ Tiak

Fig. 7.

) T . =
Since 7;{; will be zero in the same way as 7,{; the only terms
remaining in the quantity (D) are:

7%
(Fe—Gr+1) Tiln—3 7)) -

Having regard to (B), we thus arrive at the result:

3 Tiln—47d
(73) 2 o=t =g—}(+w) (for n—>oo)

In connection with (48) this already proves that d(v,v,)/d7 vanishes
for n — oo.
Differentiation of (73) with respect to % gives:

oo —x
(74) kgl ) TaTigr =1 (for 7 — o0)

Since terms with small £ do not contribute materially to this sum when

7 is large, we can safely replace !ri T,-H,* by 12, so that we find:
(74a) k‘-z1 fr(m) = 1]1 (for 7 — o0) .

which result is identical with eq. (39a).
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By means of a similar re-arrangement as was used in the case of (70)
we obtain the transformation:

T . e 1% %
B Z D=1 2 (x—gr+1) (Wi T+ 7, T)?)

Expressing T, through # and 6 as before and making use of (72a) and
(72b), we obtain, after some calculation:

(75) §1¢kg—g:—,+a—ﬁ(1+w*) (for 5 — o0)

Finally we consider:
*

[o:) n oo} [r———
B35 (@—m)=[dA3 D) =BT
0

where 1 stands for 4,. We have already seen that 7, — A, = {; — ;153
hence, making use of the second invariant property:

o] 7 o] | —
(76) B3 @) =2[dA3 () Cimivins
B 0

By re-arrangement this is transformed into:
*%k

|
23 (Gr—gx+) G Th

1
which, on working out, comes down to 2 7, (% ", for which we can take
2 @ 3. Consequently:

(77a) S (@—m)=25  (for 5->o0)
and
(775) jf =L —o— (14 w®)  (for n— o)

These results prove that both »,v, and d(v2v,)/dy vanish for 7 — co.
I have not calculated > X, but it seems safe to assume that the expression

for v2v, likewise will vanish for 7 — co. We shall make use of this as-
sumption in the calculation of its FOURIER transform.

21. The following observations can be made in connection with
eq. (73). We write:

— —*
(78) TTi=01+4wy) ;5 77 =PB(Ql4of)

so that w, is a constant, whereas w} is a function of » = 4,, to which
refers the restricted mean value 7). It follows from (42) that

f fr(n) of dn= wy.

) The w* which was introduced in (31), has no connection with the w} defined
here.
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We can assume that w, and w} will vanish for large k. Hence for all
relevant values of k¥ we can write

n
| 1) w3 dn == e,
[}
provided 7 has a large value. Equation (73) consequently gives:
n o0
(79) 2 0= [{Zho)}d=]—1—Go+w)
- 0

for large values of 7. This result confirms (40a) and gives an interpre-
tation of the constant which had been left undetermined.

Both equation (72a) and equation (79) are connected in a certain way
with the condition to be satisfied by the distribution of the 4; and =z,

.1
in order that the mean value (% shall exist. Reference to this condition
has been made in sections 8 and 12. One way of satisfying (79) is to
assume that

(80a) S =7—1
and
(80B) Yo+ > w=0

The first equation is obtained when we suppose that for large values
of k the dispersion of A, about its mean value k! is symmetrical and
independent of k. The system of functions g, then obtains the character
indicated in fig. 8. We can assume that g, (b [)= 0 when k£ > 2h. With
n=hl it is found that

S0 =4+ '3 @t gad =+ G—)=1—4

The relation can be expected to hold also for values of 5 not equal to
an integer multiple of I.

Fig. 8.
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Equation (80b) expresses the condition that the dispersion of 7', about
its mean value 4 [ shall not increase with 4. This follows when we calculate:

| p— |
(Th—hl)E=h (0 + 20, + 20, + 205+ ...) B—2 (0, + 2w, + S+ ...) I2.

When (80b) is satisfied, the first sum vanishes, while the latter sum
converges to a value independent of k.

As was remarked in 12, it may be that the substitution of (80a) and
(80b) for (79) introduces an unnecessary restriction. What is actually

required is that (7', — 4,)? shall not increase with A.

Since the sums considered in egs. (70) and (76) will occur repeatedly
in the following sections, not only for large values of 7, but also for other
values, it is convenient to shorten notation by writing:

I o

(81) é:"l fr(m) Ti7i+kl: =1.1I(2)

—

—
L) Cititir =0+ 2(2)

1

(82)

1\8

k

where z = 7/l. Equations (70) and (76) then become:

(83) zwzfn@
1 0
(84) > @) =2 [ Qdz
0
It follows from (73) that
(83a) J.Hdzgz—%(l—}—w) (for z —»> o0)
0
and from (77a) that
(84a) f Qdz=&
0
22. Fourier transform of v;p,. — According to section 3 the FOURIER

transform I'(n) is defined by

(17a) nI’(n)=2fmcosmydn
0

It should be kept in mind that, in I'(n) and in all following equations,
n is an arbitrary quantity of dimension (length)~! and not an integer. —
We make use of formula (47) for »,v,. The circumstance that it is slightly
in error for very small values of 7 can be left out of account so long as »
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is not too large. Integration by parts, having regard to the vanishing
of v, and of its derivative for 7 — oo, gives

(85) n I'(n)= W—{-- %f (II—1) cosnlz dz
(1}

The correction which must be applied for very large values of n, can
be found if we make use of the expression (49), which gives the correction

to v,v, connected with the rounding off of the jump at {;,. The FoUuRIER
transform of (49) (multiplied by =) is 8):

B2 (2mny/Br,)?
—a 1 [sinh (27 nv/B7)]?

When the mean value is taken, the first term cancels the first term of
(85), which is replaced by:

1

I 4723l
(85a) [sinh (2mnv/f7)]?
So long as n is small compared with g /v, formula (85) is sufficiently
accurate. Since I —1 is a bounded quantity without discontinuities,
the integral in (85) will be of order »~!, making the whole second term
of (85) of order n~3. Hence for not too small n we may write:

(85b) n I'(n) == 11+2)

n? 2

This indicates a spectral function proportional to n~2. The change of
I'(n) with time in this range can be found with the aid of (57).

Since I'(n) measures the energy distribution, the amplitude of the
spectral components will be proportional to »~!; while for each separate
component in this range, the dissipation in unit time will be independent
of n. This result is analogous to that obtained in previous work, referring
to an equation of similar type as eq. (1), but completed with a term
representing the action of an outward agency and applied to a limited
domain 0 <y < b?%. It is a consequence of the nature of the jumps
occurring in the function v(y).

The range where (85b) is valid, ends when n approaches f1l/v=1I/vt.
From then onward the spectral function decreases more rapidly than n~2.

8) Compare D. BiereNs DE HaAN, Nouv. Tables d’Intégrales Définies (Leiden
1867), Table 264, no. 2, from which the integral required can be obtained by
differentiation with respect to p.

%) See: Mathematical examples illustrating relations in the theory of turbulent
fluid motion, Verhand. Kon. Nederl. Akademie v. Wetenschappen (le sect.),
vol. XVII, no. 2, 18 —33 (1939); or the paper in Advances in Applied Mechanics,
1, 175 (1948).
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Let us finally consider very small values of n. In the integral defining
I'(n) we develop the cosine function. This will bring us to the develop-
ment already indicated in formula (18a), with

7 Lyp=2 J- v v 7" dy
0
(m being an integer), provided we may assume that the integrals con.
verge 19). By means of partial integration this expression can be trans-
formed into:

2m+3 %
221 (II—1) 2*m+2dz

(86) Lo = — @m 1+ 1)(2m + 2)
0

23. Fourier transform of v,>v, and application of equation (19). —
We have

(17b) 2f 22w, sin ny dy
0

With the aid of (53) this can be reduced to:

(87) a¥m)=—2L nrm 2L

f Qsinnlzdz

When this result is substituted into eq. (19), which is the FouRIER
transform of the fundamental equation, the following relation can be
obtained:

> neal _ 480
(88) (ﬁ2)+2 = fgsmnlzdz
The term with » apparently can be discarded when n << (v¢)~%.

When 7 is small, we develop the sine function in order to arrive at
the series (18b) with

71 =2 [ VT, d,
5

again assuming that the integrals converge. By means of partial inte-
gration this can be transformed into:

283 2m+3 - .
(89) nylzm_lz %nrzm_n”’(gT_*_l)_bf 0 22m+1 g,
Equation (20) then leads to:
d (7o Tomo  4BI2m+3 p .
(90) (_E(”ﬂ22>_4ym(2m_1)” ;2 2=2f:n+lfgzz +1
0

10) No difficulty will arise with the integrals appearing in (86), (89) and (90),
if we assume that the functions f,(4,) vanish exponentially for A, — oo.
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24. Similarity considerations. — An important tool in the investigation
of turbulence has become the assumption of the preservation of statistical
similarity during the development in time !!). When applied to the
system under consideration this assumption requires that, under the
laws of motion stated in section 7, mean values of quantities of the same
degree in A;, 7, {; should keep a constant ratio. A consequence is that
the dimensionless quantities w, w*, @ introduced in (31) must remain
constant during the development of the system. The same will apply
to the w, defined in (78); and also to the wj and similar restricted mean
values, provided the value of 1, or A, to which they refer is made to
change proportionally with I.

We give attention in the first place to the expression (35) for the
invariant J,, which we assume to be different from zero. The mean

p————
value 7;7;.,(; ;.. in a self-preserving system must be proportional to 4.
Since J, is independent of the time, we thus arrive at the result:

PPl =Bl =Jy/c
(c being a numerical quantity), from which:
(91) looth.

It follows immediately that

(92a) Ecvovrco f2loot™h
while:
(92b) £ oo ¢

From eq. (9) we then obtain
$Et=%fE=c¢,

and reference to eqs. (32) and (33) leads to the relation:

(93) 6= (1+0")
from which, in connection with (34)12):
(94) A2= 3t

11)  Compare papers by TH. pE KarMAN, G. K. BATCHELOR, F. N. FRENKIEL,
C. C. LI~ and others. We mention in particular: G. K. BATCHELOR, Energy decay
and self-preserving correlation functions in isotropic turbulence, Quart. Appl.
Mathem. 6, 97, section 6 (1948).

12) Tt will be recognised that the quantity 4, defined in eqs. (7) —(9) as a kind
of minimum length associated with the correlation function essentially depending
on the rounding off of the jumps in »(y), which quantity is used again in (34) and
here in (94), has nothing to do with the 4 applied in egs. (36) etc. and in egs. (69),
(70) etc. as an integration variable representing the length of a segment A; between
two jumps (or the sum A; of the lengths of a set of consecutive segments). It is
trusted that no difficulties will arise through this double use of A.
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Hence A cot™s, which means that [ and A are not proportional. Similarity
consequently is not possible for all aspects of the system; the type of
similarity considered here applies to relations involving dimensions
large compared with /2. Since Icot™, the difference between I and 1
increases with £, so that the range to which this similarity applies is
continually extended. It is of interest to note that the REYNOLDS’ number
Re, increases proportionally with ¢':, since L oo loco tand v oo Ehco ¢,
— The failure of similarity in the smallest dimensions will be responsible
for the difference between the limit found for = in connection with
formulae (85a), (85b), viz. B1l/v oo ¢t~'s, and the limit found in connection
with (88), viz. (vt)~".
Equation (65) giving dl/dt now leads to the important formula

* [t
T;

—
(95) h(mittia) =h

When this is substituted into (68) we are brought back to (93).
Another interesting result is obtained from (66):

whe

(96) fo (Tt Tard) TeTien = 3 (14 @) 2

Turning to the spectrum we observe that I\y= 2 Jy/= is independent
of the time. Hence we must expect that the same will apply to I'(n),
provided we make n vary inversely proportionally to I, i.e. moot="h,
Indeed it will be seen from (85b) that this makes I'(rn) constant. Apparently
the head of the spectrum contracts towards the lower wave numbers.
This is a consequence of the reduction of the number of segments 4; and
7;, considered in section 7.

25. The similarity hypothesis makes it possible to write v, in the
form:

(@) v v, =Ry (),

where y does not contain the time in an explicit way. We then find
O = '
(b) o =—4FL(v+Tv).

When this result is substituted into the fundamental equation (12a)
and use is made of (47) and (54), the following formula is obtained:

ST a—3%—n)=—(+o) 20+ (1+0"),

which is not confined to large values of #, but must be valid for all values
of 7 (except those of order v ¢/l).
Substitution of 7= 0 leads us back to (93), so that the equation is



728

also valid here. We can therefore omit the last two terms on the right
hand side, which leaves us with:

(97) 02::(2'1%¢k_3¢k—xk>=_(1+w)—%

When we divide by %/l and go to the limit # = 0, we come back to (96). —
With the aid of the results of section 20 it is easy to show that the
equation is satisfied for # — oco.

When (97) is differentiated with respect to #, and attention is given
to (81), (82) and (84), the following equation can be derived:

(98) Q=%(1+a))—§zzj—z(—zl—f 11 dz)
0

It can be surmised that this relation between the functions £ and I1,
obtained for self-preserving systems, will play an important part
in the statistical relations characterising such systems.

For z= 0 the equation gives 2= 1 (1 4 w). The same value is obtained
from (82) if it is observed that all f.(n) go to zero for = 0, with the
exception of f (), which has the limiting value f,. Since {;—;,,=
= ¥(t;+ 7;.,) when 1,,,= 0, the only term remaining in (82) can be
readily reduced with the aid of (96).

It is further found that d 2/d z= 0 for z= 0.

For large values of z eq. (83a) gives [ITd z= z — }(1 + w), which duly
leads to 2= 0 for z » oco.

Equation (98) can also be solved for II. Introducing the result into
(83) we obtain:

oo

(99) gwkzoz—g(1+w)+3zj'gdz

z

This is an extension of (73), now valid for all values of 7. The coefficient C
(which makes its appearance as an integration constant) evidently must
be equal to 1.

Formula (48) now gives:

oo
0 = 2
b—n-vlvz=—3ﬂ2lzf§dz,

from which by integration:

(100) Vo= LB (T.de—zz]?i—idz)
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Since we have seen that 2 has a finite value for z—= 0, the second term
between the brackets in (100) vanishes for z= 0 and we obtain:

(101) F:%ﬁﬂzf!)dz
0
from which, in connection with (32) and (93):
(102) [ed=6=140+w"
0

We can also form:
?xszﬂzdzz%zz—?}f[)dz—i—i}zzfgdz
0 z

(1}

§¢k=f(nz+29)dz=%zz—l--éofz!?dz-{— 3—22I§dz
ﬁxkzofz(nzu 202) dz:%z"—{—za:fgdz
%’ (v vy) = — B312 (Tde—-3z2:T§dz)
(103) Vv, =— 31 (zT.de——zaofgdz)

From the latter expression it follows that for self-preserving systems

(104) Vivg=—5fBnv 0,

It will be seen that this relation can be obtained immediately from eqs.
(a) and (b) at the beginning of this section, since these give

2 LoD
b_tvl”z:‘—?;ﬂ'a;(’?' vy Vy)

for self-preserving systems. Substitution into (12a¢) and integration

immediately leads to (104).
Finally, after some transformations, we find:

n

(105) nI'(n)= e f dnn f Qsinnlzdz
0

n3
0

By calculating the limit for » — 0 we obtain

(106) Joz%nl‘ozﬂﬂ”_’.!)zdz
0
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which can also be deduced directly from (100). If we may assume that
d Q|dz <0 for all 2, we can calculate the limiting form for large =,
which gives:
6821 27(1
al ()=t o@) =201

This is in accordance with (85b).

26. We add an observation concerning J,. Introducing the ‘“momenta’

(107) pi=pril;

[(compare footnote 3) to section 7)], we can write:

1 — ©
(108) Jo=7(%ﬂ%+ 2 M #m)
k=1

We have already seen that the u; do not change during the normal
motion. When two vertical segments t;, 7;,, combine to form a single
segment, the corresponding momenta y;, u;., simply add.

We consider the change in the course of time suffered by the various
terms of the sum (108) in consequence of the combination of segments.
For shortness we write:

a=1%fo(rit T/t (for ;> 0).

From a consideration of terms disappearing and newly appearing in the
sums, upon coalescence of segments, it is found that:

*

d%(%N;LE)=Naﬂi/‘i+1

I Tk

d T T
ENM Biv1=2Nap;pie—N ap;pi

d . T — —
EN pi Bivg=(k+1) N ap;pixer— kN ap;prisg.

In the first two equations the asterisk indicates the restricted mean
value for 4; — 0. In the other terms we have omitted the asterisk, since
A, (k> 1) does not become zero; it is assumed that ordinary mean values
could be used. Whether this may be correct or an approximation only,
it will be seen that for every case of coalescence the terms appearing
in one mean value, disappear from the next higher one. Hence it is found
again that
d J,/dt = 0.

However, if the similarity hypothesis holds, every separate mean value
must satisfy the relation

4
M iy OO BRI,
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so that
d L d 13
a5 N s i B B=0.

This requires that ka u; u;,; shall be independent of k. We cannot
suppose that this should be a constant differing from zero, for this would
make the sum divergent. We are thus led to the conclusion that these
quantities must be zero for k 7 0. This will be the case if it can be
assumed that all {; are independent of each other, so that

. 1

(109) Ci €i+k=0 (kiO)

1 . 5
and likewise yu; u;,,= 0 for all £ different from zero. The expression
for J, then becomes:

2

l

]

(110) Jy =

el

©.00

oy
9.

T

It is probable that in sections 24 — 26 we have obtained the principal
relations that can be deduced from the hypothesis of similarity. The
results of section 25 have shown that the relevant statistical quantities
for self-preserving systems depend upon a single function, for which
we may take either I1(z) or £(z). The form of this function, however,
remained unknown and it is not to be expected that the similarity hypo-
thesis can help us much further in this respect. Substitution of the full
expressions (47) and (54) for »w, and d(v2v,)/d7 into the fundamental
equation (12a) can give a lot of relations we have not made use of, but
it has become evident that every new equation brings new statistical
functions, so that it looks as if there will always be more unknowns than
equations.

The only way to obtain further information will be an attack upon
the intrinsic statistical problem. Although the complicated relations
between the A;, 7,, {; make a solution of this problem beyond our power,
it will be attempted to discuss certain aspects in the last part of this

paper.

(To be continued).



