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20. Further investigation ol the correlation lunction V1V2• - In Part 11 

expressions have been constructed for the correlation functions V1V2 

and viv2• These expressions have been applied to investigate some conse
quences of the fundamental equation (12), particular attention being 
given to values of 'YJ small in comparison with the mean length l of the 
segments l'i' In the resultsan important part was played bythe statistical 
parameter 10 = lim 11(1..) for I.. ~ 0, together with certain mean values 
referring to I.. ~ O. 

We now turn to some long distanc~ relations. In the first place we 

will show that the expression (47) for V1V2 and its derivative (48) vanish 
for large values of 'YJ. 

We write 

(69) 

so that gk measures the probability for Ak to be less than 'YJ [Ak is the 
sum ofthe lengths of k consecutive segments 1.." from 1..1+1 to I..i+k inclusivè; 
compare (37)]. It will be evident that the expression: 

(70) 

combines all cases defined by the inequalities 

0<1..1+1 < 'YJ 

o < 1..1+ 1 + 1..1+ 2 < 'YJ 

o < 1..1+1 + 1..1+2 + 1..1+3 < 'YJ, etc., 

each case with its proper frequency of occurrence. Without omitting 
any one we can re-arrange these cases in such a way that we first consider 
the class for which 

1..1+1 < 'YJ < 1..\+1 + 1..1+2 ; 

*) Continued from these Proceedings, p. 393 -406. - In eq. (50), p. 401, the 
last factor should be TJI/ll, the same as in eq. (49b). 
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next the claas for which 

AHl + Ai+2 < 'YJ < AHl + AH2 + AH3 

(which naturally entails AHl < 'YJ); then the claas for which 

Ai+l + AH2 + AH3 < 'YJ < AHl + Ai+2 + AH3 -+- AiH 

(which entails AHl < 'YJ; AHl + )'H2 < 'YJ), etc. The probabilities to be 
assigned to the classes thus distinguished (that is, the relative numbers 
of cases falling in any one of them) are given by 

(A) 
It follows from (36) that 

(B) 

if 'YJ is sufficiently large. 
We take those terms of the sum (70) which refer to the particular 

class defined by 

(0) 

and add together the quantities "t"i"t"Hl' "t"i"t"H2' "t" i "t" H 3,'" occurring In 

these terms. The contribution obtained in this way can be written: 

(D) 
r-ï •• 

(gk-gHl) "t"i T~ 

where 

(71) T~= "t"Hl + "t"i!2+ ... + "t"Hk= Tk-t"t"i+ t"t"i+k= (1 i+k-(1i 

[compare (44)], while the new type of restricted mean values refers to 
the cases satisfying the inequalities (0). When (D) is summed with respect. 
to k from k = 1 to infinity, we obtain the expression (70). 

'Ve write: 

(72) 

(compare fig. 7). Sin ce T k + Ci+k - Ci = .11 k, so that 

T~ = Ak - t"t"i + Ci + t"t"i+k - CiH, 

we find: 

() = Ak-'YJ + t"t"Hk-Ci+k= Ak+l-'YJ-t"t"iH+I-Ci+k+l' 

Hence in consequence of (0) () satisfies the inequalities: 

-t"t"Hk+l-CHk+l < () < t"t"i+k-Ci+k' 

When 1J is sufficiently large, gk will practically be equal to 1 and 
gk - Yk+l = 0, for all k which are small compared with 'YJll. Terms with 
small values of k consequently will play an insignificant part in the sum 
of the quantities (D). 'Ve can safely assume that in all significant terms 0 
will be completely independent of "t"i' so that 

(72a) 
".. ....., ,......, .. 
"t"i () ="t"i • () = 0 
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For later use we add the formula: 

r---1*. ,....., ,.....,.. I i •• 

Ti (J2 = Ti' (J2 = t {(! Ti+k+1 + Ci+ k+ 1)3 + (! Ti+k - Ci+k)3} , 

which for large TJ we can assume to become equal to its ordinary mean 
value, so that 

(72b) 

~----------------J\k+I--------------~~--~ 

~--------------Jlk----------~ 

~~----------,~--------~~--1: 1'l- 'l,-..I----+-
~--------_Tk • -rl + I + ..... + 't'l +k -------...4 

Fig. 7. 

r-ï.. r-ï 
Since Ti Ci will be zero in the same way as Ti Ci' the only terms 
remaining in the quantity (D) are: 

i , •• 

(gk-gk+1) T.(TJ-!Ti ) • 

Having regard to (B), we thus arrive at the result: 

00 I I 
(73) L q; ~ Td1'/-t T

i) - !l._ t (1 + w) (for TJ -+ 00) 
k_1k= l2 -l 

In connection with (48) this already proves that (j(V1V2)/(jTJ vanishes 
for TJ -+ 00. 

Differentiation of (73) with respect to TJ gives: 

(74) (for TJ -+ 00) 

Since terms with small k do not contribute materially to this sum when 
r--;. 

TJ is large, we can safely replace Ti Ti+k by l2, so that we find: 

(74a) (for TJ -+ 00) , 

which result is identical with eq. (39a). 
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By means of a similar re-arrangement as was used in the case of (70) 
we obtain the transformation : 

Expressing T~ through 'YJ and () as before and making use of (72a) and 
(72b), we obtain, af ter some calculation: 

(75) (for'YJ -* 00) 

Finally we consider: 

where J. stands for Ak' We have already seen that T" - Ak = /;i -/;'+1:; 
hence, making use of the second invariant property: 

'1 

(76) za ~ (<Pk- Xk) = 2 f dJ. ~ h (J.) e, T, TH~· 
k - l 0 1 

By re-arrangement this is transformed into: 

r---;J •• 
which, on working out, comes down to 2 Ti /;r ,for which we can take 
2 cU l3. Consequently: 

(77a) 

and 

(77b) 

00 

L (<P,,- Xk) ro.J 2 W (for 'YJ -* 00) 
"-1 

(for 'YJ -* 00) 

These results prove that both V1V2 and o(viv2)jO'YJ vanish for 'YJ -* 00. 
I have not calculated LXk , but it seems safe to assume that the expres sion 

for viv2 likewise will vanish for 'YJ -+- 00. We shall make use of this as
sumption in the calculation of its FOURIER transform. 

21. The following observations can be made in connection with 
eq. (73). We write: 

1-0. 
(78) TiTi+k =l2(I+wt) 

so that Wk is a constant, whereas wZ is a function of 'YJ = Ak' to which 
refers the restricted mean value 7). It follows from (42) that 

00 

f /,.('YJ) oot d'YJ = Wk' 
o 

7) The w. which was introduced in (31), has no connection with the w: detined 
here. 
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We can assume that Wk and W: will vanish for large k. Hence for all 
·relevant values of k we can write 

'1 

f M'YJ) w: d'YJ '" Wk. 
o 

provided 'YJ has a large value. Equation (73) consequently gives: 

'1 

(79) k~lYk('YJ)= f {:L!d'YJ)}d'YJ=t-!-(!W+~Wk) 
o 

for large values of 'YJ. This re sult confirms (40a) and gives an interpre
tation of the constant which had been left undetermined. 

Both equation (72a) and equation (79) are connected in a certain way 
with the condition to be satisfied by the distribution of the Ä,i and Ti. 

ïï 
in order that the mean value C~ shall exist. Reference to this condition 
has been made in sections 8 and 12. One way of satisfying (79) is to 
assume that 

(80a) 

and 

(80b) 

The first equation is obtained when we suppose that for large values 
of k the dispersion of Ak about its mean value klis symmetrical and 
independent of k. The system of functions Yk then obtains the character 
indicated in fig. 8. We can assume that Yk (h l) = 0 when k> 2h. With 
'YJ = h l it is found that 

The relation can be expected to hold also for values of TJ not equal to 
an integer multiple of l. 

Fig. 8. 
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Equation (80b) expresses the condition that the dispersion of T~ about 
its mean value hlshall not increase with h. This follows when we calculate: 

Wh en (80b) is satisfied, the first sum vanishes, while the latter sum 
converges to a value independent of k. 

As was remarked in 12, it may be that the substitution of (80a) and 
(80b) for (79) introduces an unnecessary restriction. What is actually 

i i 
required is th at (T~ - Jlh)2 shall not increase with h. 

Since the sums considered in eqs. (70) and (76) will occur repeatedly 
in the following sections, not only for large values of TJ, but also for other 
values, it is convenient to shorten notation by writing: 

(81) 

(82) 

where z = TJll. Equations (70) and (76) then become: 

(83) 

z 

(84) ~ (c1)k-X~·) = 2 J Q dz 
I 0 

It follows from (73) that 

• 
(83a) J II dz "-' z - t (l + co) (for z -+ 00) 

o 

and from (77a) that 

(84a) 

00 

J Qdz= (ij 

o 

22. Fa'urier transfarm af V1V2• - According to section 3 the FOURIER 

transform T(n) IS defined by 

(17a) 
00 

n T(n) = 2 J VI V2 COS nTJ dTJ 
o 

It should be kept in mind that, in T(n) and in all following equations, 
n is an arbitrary quantity of dimension (length)-I and not an integer. -

We make use of formula (47) for V1V2• The circumstance that it is slightly 
in error for very sm all values of TJ can be left out of account so long as n 
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is not too large. Integration by parts, having regard to the vanishing 

of V1V2 and of its derivative for 'fJ --+ 00, gives 

. 00 

(85) ,BIl(l+w) 2,BIlJ n r(n) = 2 + -I (ll-I) cos nlz dz n n 
o 

The correction which must be applied for very large values of n, can 
be found if we make use of the expression (49), which gives the correction 

to V1V2 connected with the rounding off of the jump at Ci. The FOURIER 
transform of (49) (multiplied by n) is 8): 

When the mean value is taken, the fust term cancels the first term of 
(85), which is replaced by: 

(85a) 

So long as n is small compared with P llv, formula (85) is sufficiently 
accurate. Since II - 1 is a bounded quantity without discontinuities, 
the integral in (85) will be of order n-1, making the whole second term 
of (85) of order n-s. Hence for not too small n we may write: 

(85b) r( ) ~ l(l+w) 
n n - nltS 

This indicates aspectral function proportional to n- 2 • The change of 
r(n) with time in this range can be found with the aid of (57). 

Since r(n) measures the energy distribution, the amplitude of the 
spectral components will be proportional to n -1; while for each separate 
component in this range, the dissipation in unit time will be independent 
of n. This result is analogous to that obtained in previous work, referring 
to an equation of similar type as eq. (1), but completed with a term 
representing the action of an outward agency and applied to a limited 
domain 0 ~ y ~ b 9). It is a consequence of the nature of the jumps 
occurring in the function v(y). 

The range where (85b) is valid, ends when n approaches Pllv = llv t. 
From then onward the spectral function decreases more rapidly than n -2. 

8) Compare D. BIERENS DE HAAN, Nouv. Tables d'Intégrales Définies (Leiden 
1867), Table 264, no. 2, from which the integral required can he obtained by 
differentiation with respect to p. 

8) See: Mathematical examples illustrating relations in the theory of turbulent 
fluid motion, Verhand. Kon. Nederl. Akademie v. Wetenschappen (Ie sect.), 
vol. XVII, no. 2, 18-33 (1939); or the paper in Advances in Applied Mechanica, 
1, 175 (1948). 
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Let us finally eonsider very small values of n. In the integral defining 
T(n) we develop the eosine funetion. This will bring us to the develop
ment already indieated in formula (l8a), with 

00 

n T 2m = 2 J VI V2 'YJ2m d'YJ 
o 

(m being an integer), provided we may assume th at the integrals con. 
verge 10). By means of partial integration this expression ean be trans
formed into: 

(86) 

00 

2 f1 2 1
2m

+
3 J 

n T 2>n = - (2rn + 1) (2m + 2) 
(Il-l) z2m+2 dz 

o 

23. Fourier translorm ol V 1
2V 2 and application ol equation (19). -

We have 
00 

(17b) n 1Jf (n) = 2 J vi V2 sin n'YJ d'YJ 
o 

With the aid of (53) this ean be redueed to: 
00 

(87) 2f1 4f13 12 J n 1Jf (n) = - - n T(n) + --2- Q sin nlz dz 
n n 

o 

When this result is substituted into eq. (19), whieh is the FOUItIER 

transform of the fundamental equation, the following relation ean be 
obtained: 

00 

(R8) i) (nr) nr 4f112 J . - - + 2vn2 -= -- Qsmnlzdz 
i)t f12 f12 n 

o 

The term with v apparently ean be disearded when n ~ (v t)-l. 

When n is small, we develop the sine funetion in order to arrive at 
the series (18b) with 

00 

lTI 2 r -2- 9m-l d n T2m-l = . VI V2 'YJ- 'YJ, 
o 

again assuming that the integrals converge. By means of partial inte
gration this ean be transformed into: 

00 

(89) _ f1 2 f1 3 12m+3 J 2m+ I 
n 1Jf2m- l - m nT2m - m(2m+ I) Q z dz 

o 

Equation (20) then leads to: 

00 

(90) ~(nr2m)_4 (2 _1)nr2m-2 = 4f112m+3 r r. 2m+ld 
dt f12 vmm f12 2 m + 1 . ~~ z z 

o 

10) No difficulty will arise with the integrals appearing in (86), (89) and (90), 
if we assume that the functions hV1k) vanish exponentially for AA: -+ 00. 
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24. Similarity considerations. - An important tooI in the investigation 
of turbulence has become the assumption of the preservation of statistical 
similarity during the development in time 11). When applied to the 
system under consideration this assumption requires that, under the 
laws of motion stated in section 7, mean values of quantities of the same 
degree in Ä-;, Ti' Ci should keep a constant ratio. A consequence is that 
the dimensionless quantities w, w*, w introduced in (31) must remain 
constant during the development of the system. The same will apply 
to the Wk defined in (78); and also to the wZ and similar restricted mean 
values, provided the value of Ä-. or .11k to which they refer is made to 
change proportionally with l. 

We give attention in the first place to the expression (35) for the 
invariant Jo, which we assume to be different from zero. The mean 

valueiTiTi+kCiCi+~ in a self-preserving system must be proportional to l4. 
Since Jo is independent of the time, we thus arrive at the result: 

f32 [3 = l3ft2 = Jolc 

(c being a numerical quantity), from which: 

(91) l~t'/, . 

It follows immediately that 

(92a) 

while: 

(92b) e~t-'/, 

From eq. (9) we then obtain 

tElt = t f3 E = e, 

and reference to eqs. (32) and (33) leads to the relation: 

(93) w= t (l+w*) 

from which, In connection with (34) 12): 

(94) 

11) Compare papers by TH. DE KARMAN, G. K. BATCHELOR, F. N. FRENKIEL, 

C. C. LIN and others. We mention in particular: G. K. BATCHELOR, Energy decay 
and self.preserving correlation functions in isotropic turbulence, Quart. Appl. 
Mathem. 6, 97, section 6 (1948). 

12) It will be recognised that the quantity )., defined in eqs. (7) - (9) as a kind 
of minimum length associated with the correlation function essentially depending 
on the rounding off of the jumps in v(y), which quantity is used again in (34) and 
here in (94), has nothing to do with the ). applied in eqs. (36) etc. and in eqs. (69), 
(70) etc. as an integration variabie representing the length of a segment ).i between 
two jumps (or the sum Ak of the lengths of a set of consecutive segments). It is 
trusted that no difficulties will arise through this double use of ) .. 
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Hence À ~ f'" which means that land À are not proportional. Similarity 
consequently is not possible for all aspects of the system; the type of 
similarity considered here applies to relations involving dimensions 

large compared with VVt. Since l ~ t'!., the difference between land À 

increases with t, so that the range to which this similarity applies is 
continually extended. It is of interest to note that the REYNOLDS' number 
Rel increases proportionally with t"', sin ce L ~ l ~ t", and v ~ E", ~ t-",. 
- The failure of similarity in the smallest dimensions will be responsible 
for the difference between the limit found for n in connection with 
formulae (85a), (85b), viz. {Hiv ~ t-"·, and the limit found in connection 
with (88), viz. (v t)-",. 

Equation (65) giving dlldt now leads to the important formula 

i i*,....,. 
(95) 110 (1';+ 1'Hl) = 10 Ti = * 
When this is substituted into (68) we are brought back to (93). 

Another interesting result is obtained from (66): 

i i. 
(96) 10 (1';+1'H1) 1'; TH 1 = i- (l+w) l2 

Turning to the spectrum we ob serve that Fo = 2 Joln is independent 
of the time. Hence we must expect that the same will apply to F(n), 
provided we make n vary inversely proportionally to l, i.e. n ~ t-",. 
lndeed it will be seen from (85b) that this makes F(n) constant. Apparently 
the head of the spectrum contracts towards the lower wave numbers. 
This is a consequence of the reduction of thc number of segments Ài and 
1';, considered in section 7. 

2S. The similarity hypothesis makes it possible to write VIV2 in the 
form: 

(a) VI v2 = p2l2 'lP (rJll) , 

where 'lP does not contain the time in an explicit way. We then find 

(b) 

When this result is substituted iuto the fundamental equation (12a) 
and use is made of (47) and (54), the following form uIa is 0 btained : 

which is not confined to large values of 1}, but must be valid for all values 
of 1} (except those of order v til). 

Substitution of 'YJ = 0 leads us back to (93), so that the equation is 
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also valid here. We can therefore omit the last two terms on the right 
hand side, which leaves us with: 

(97) 00 ( 'fJ ) 'fJ L 2 Y flJk - 3 tPk - Xk = - (1 + cu)y 
I 

When we divide by TJ/l and go to the limit TJ = 0, we come back to (96). -
With the aid of the results of section 20 it is easy to show that the 
equation is satisfied for TJ -+ CXl. 

When (97) is differentiated with respect to TJ, and attention is given 
to (81), (82) and (84), the following equation can be derived: 

z 

(98) Q = à (1 + cu) - ~ Z2 :z e I Il dz) 
o 

It can be surmised that this relation between the functions Q and Il, 
obtained for self-preserving systems, will play an important part 
in the statistical relations characterising such systems. 

For z = 0 the equation gives Q = ~- (1 + cu). The same value is obtained 
from (82) if it is observed that all h(TJ) go to zero for TJ = 0, with the 
exception of II(TJ), which has the limiting value 10' Since Ci - CHI = 

= i("r i + 't'HI) when ÀHI = 0, the only term remaining in (82) can be 
readily reduced with the aid of (96). 

It is further found that d Q/d z = 0 for z = o. 
For large values of z eq. (83a) gives J Il d z = z - i(1 + cu), which duly 

leads to Q = 0 for z -+ CXl. 

Equation (98) can also be solved for Il. Introd'ucing the result into 
(83) we obtain: 

00 

(99) 
00 _Q 

LflJk=Cz-i(1+cu)+3zJ ;:;adz 
I ~ 

This is an extension of (73), now valid for all values of TJ. The coefficient C 
(which makes its appearance as an integration constant) evidently must 
be equal to 1. 

Formula (48) now gives: 

00 

0- IQ 
O'fJ VI V 2 = - 3 fJ2l z Z2 dz , 

z 

from which by integration: 

00 00 

(100) V 1 v2 =ifJ2l2 (I Qdz-z2 I~dz) 
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Since we have seen that Q has a finite value for z = 0, the second term 
between the brackets in (100) vanishes for z = 0 and we obtain: 

(lOl) 
00 

v2 = 1- fJ2 l2 f Q dz 
o 

from which, in connection with (32) and (93): 

00 

(102) f Qdz= w=·~ (l+w*) 
o 

We can also form: 

• • 00 

~ X,. = f Il z dz = l Z2 - ~ f Q dz + ï Z2 f ~ dz 
o 0 • 

• z 00 

~ (/J,. = f (II z+ 2Q) dz = l Z2 -I- l f Q dz + ~- Z2 f ~ dz 
o o. 

• 00 

~X,.= f (Il z2+2Qz)dz=t z3 + z3 f~dz 
o z 

00 00 

:1) (vi v2) = - fJ3l2 (f .Q dz - 3 Z2 f ~ dz) 
z • 

00 00 

(103) vi V2 = - fJ3ZJ (z f Q dz - Z3 f ~ dz) 

From the latter expression it follows that for self-preserving systems 

(104) 

It will he seen that this relation can he ohtained immediately from eqs. 
(a) and (b) at the heginning of this section, since these give 

0-- 0--
~ VI v~ = - i fJ (1) ('YJ • VI v2) 

for self-preserving systems. Substitution into (12a) and integration 
immediately leads to (104). 

Finally, af ter some transformations, we find: 

" 00 

(105) 6{J2l2 f f n r(n) = """"1ï3 dn n .Q sin nlz dz 
o 0 

By calculating the limit for n --+ 0 we obtain 

(106) 
ex> 

Jo = l n ro = fJ2ZJ f Q z dz 
o 
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which can also be deduced directly from (100). If we may assume that 
d Qjd z ~ 0 for all z, we can calculate the limiting form for large n, 
which gives: 

:re r(n) = 6::l Q(O) = lJ2l(~2+ ro). 

This is in accordance with (85b). 

26. We add an observation concerning Jo. Introducing the "momenta" 

[(compare footnote 3) to section 7)], we can write: 

( 108) 

We have already seen that the f-li do not change during the normal 
motion. When two vertical segments Ti' 1"+1 combine to form a single 
segment, the corresponding momenta f-li' f-li+l simply add. 

We consider the change in the course of time suffered by the various 
terms of the sum (108) in consequence of the combination of segments. 
For shortness we write: 

(for A. i -+ 0). 

From a consideration of terms disappearing and newly appearing in the 
sums, up on coalescence of segments, it is found that: 

d ( ~) i i. 
dt t N f-lr = N a, f-li f-li+l 

d i i i i i i* 
dt N f-li f-li+l = 2N a, f-li f-li+2 - N a, f-li f-li+l 

d i i i i i I 
dt N f-li f-li+k = (k+ 1) N a, f-li f-li+k+l - k N a, f-li f-li+k • 

In the first two equations the asterisk indicates the restricted mean 
value for A. i -+ o. In the other terms we have omitted the asterisk, since 
Ák (k > 1) does not be co me zero; it is assumed that ordinary mean values 
could be used. Whether this may be correct or an approximation only, 
it will be seen that for every case of coalescence the terms appearing 
in one mean value, disappear from the next higher one. Hence it is found 
again that 

dJojdt = O. 

However, if the similarity hypothesis holds, every separate mean value 
must satisfy the relation 
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so that 

This requires that k ~ fti fti+k' shall he independent of k. We cannot 
suppose that this should he a constant differing from zero, for this would 
make the sum divergent. We are thus led to the conclusion th at these 
quantities must he zero for k -=F- O. This will he the case if it can he 
assumed that all Ci are independent of each other, so that 

( 109) 

i i 
and likewise fti fti+k = 0 for all k different from zero. The expression 
for Jo then hecomes: 

(llO) 
{32 ,--, 1-''1, 

J 2}"2' 
o = 2l Li;,i = TI 

It is prohahle that in sections 24 - 26 we have ohtained the principal 
relations that can he deduced from the hypo thesis of similarity. The 
results of section 25 have shown that the relevant statistical quantities 
for self-preserving systems depend upon a single function, for which 
we may take either II(z) or Q(z). The form of this function, however, 
remained unknown and it is not to he expected that the similarity hypo
thesis can help us much further in this respect. Suhstitution of the full 

expressions (47) and (54) for V1V2 and (j(VIV2 )/(jr; into the fundamental 
equation (12a) can give a lot of relations we have not made use of, hut 
it has hecome evident that every new equation hrings new statistical 
functions, so th at it looks as if there will always he more unknowns than 
equations. 

The only way to ohtain further information will he an attack upon 
the intrinsic statistical prohlem. Although the complicated relations 
hetween the À-;, Li' Ci make a solution of this prohlem heyond our power, 
it will he attempted to discuss certain aspects in the last part of this 
paper. 

(To be continued). 


