MATHEMATICS

A SYMMETRIC FORM OF GÖDEL'S THEOREM *)

BY
S. C. KLEENE
(Communicated by Prof. L. E. J. Brouwer at the meeting of April 29, 1950)

It has been remarked, particularly in articles of Mostowski ${ }^{1}$), that recursively enumerable sets behave surprisingly similarly to analytic sets and general recursive sets to Borel sets. It is a theorem of Lusin that two disjoint analytic sets can always be separated by a Borel set, i.e. this Borel set contains one of the given analytic sets and is disjoint from the other ${ }^{2}$). We shall construct two disjoint recursively enumerable sets C_{0} and C_{1} which cannot be separated by a general recursive set. This example shows that there is no exact parallelism between the two theories ${ }^{3}$).

We actually establish the following property of the sets C_{0} and C_{1}, which is stronger constructively: Given any two disjoint recursively enumerable sets D_{0} and D_{1} such that $C_{0} \subset D_{0}$ and $C_{1} \subset D_{1}$, there can always be found a number f such that $\overline{f \varepsilon D_{0}+D_{1}}$.

Let T_{1} be the primitive recursive predicate so designated in a previous paper by the author ${ }^{4}$), and let $(x)_{i}$ be the number of times x contains the $i+1$-st prime number as factor $\left.(0 \text {, if } x=0)^{5}\right)$. Let predicates W_{0}

[^0]and W_{1} be defined thus,
\[

$$
\begin{aligned}
& W_{0}(x, y) \equiv T_{1}\left((x)_{1}, x, y\right) \&(z)\left\{z \leqslant y \rightarrow \bar{T}_{1}\left((x)_{0}, x, z\right)\right\}, \\
& W_{1}(x, y) \equiv T_{1}\left((x)_{0}, x, y\right) \&(z)\left\{z \leqslant y \rightarrow \bar{T}_{1}\left((x)_{1}, x, z\right)\right\},
\end{aligned}
$$
\]

and the sets C_{0} and C_{1} as follows,

$$
C_{0}=\hat{x}(E y) W_{0}(x, y), \quad C_{1}=\hat{x}(E y) W_{1}(x, y) .
$$

The predicates W_{0} and W_{1} are primitive recursive ${ }^{6}$); hence the sets C_{0} and C_{1} are recursively enumerable ${ }^{7}$). From $W_{0}\left(x, y_{0}\right)$ and $W_{1}\left(x, y_{1}\right)$ we can infer both $y_{0}>y_{1}$ and $y_{1}>y_{0}$; hence

$$
\begin{equation*}
\overline{(E y) W_{0}(x, y) \&(E y) W_{1}(x, y)} \tag{1}
\end{equation*}
$$

i.e. C_{0} and C_{1} are disjoint.

Consider any two disjoint recursively enumerable sets D_{0} and D_{1} such that $C_{0} \subset D_{0}$ and $C_{1} \subset D_{1}$. We can write $D_{0}=\hat{x}(E y) R_{0}(x, y)$ and $D_{1}=\hat{x}(E y) R_{1}(x, y)$ with R_{0} and R_{1} recursive.

Now we show that there is a number f such that $\overline{f \varepsilon D_{0}+D_{1}}$.
By the enumeration theorem for predicates of the form $(E y) R(x, y)$ with R recursive ${ }^{8}$), there are numbers f_{0} and f_{1} such that, if we put $f=2^{f_{0}} \cdot 3^{f_{1}}$, then

$$
\begin{align*}
& (E y) R_{0}(x, y) \equiv(E y) T_{1}\left(f_{0}, x, y\right) \equiv(E y) T_{1}\left((f)_{0}, x, y\right) \tag{2}\\
& (E y) R_{1}(x, y) \equiv(E y) T_{1}\left(f_{1}, x, y\right) \equiv(E y) T_{1}\left((f)_{1}, x, y\right) . \tag{3}
\end{align*}
$$

Assume: (a) $f \varepsilon D_{0}$, i.e. ($E y$) $R_{0}(f, y)$. Then by (2): (b) $(E y) T_{1}\left((f)_{0}, f, y\right)$. Also by (a) and the disjointness of D_{0} and D_{1} : (c) $\overline{f \varepsilon D_{1}}$, i.e. $(\overline{E y}) R_{1}(f, y)$. Thence by (3), $(\overline{E y}) T_{1}\left((f)_{1}, f, y\right)$; whence: (d) $(y) \bar{T}_{1}\left((f)_{1}, f, y\right)$. By (b) and (d), $(E y)\left[T_{1}\left((f)_{0}, f, y\right) \&(z)\left\{z \leqslant y \rightarrow \bar{T}_{1}\left((f)_{1}, f, z\right)\right\}\right]$, i.e. $(E y) W_{1}(f, y)$, i.e. $f \varepsilon C_{1}$. Since $C_{1} \subset D_{1}$, therefore $f \varepsilon D_{1}$, contradicting (c). By reductio ad absurdum, therefore (a) is false; i.e.

$$
\begin{equation*}
\overline{f \varepsilon D_{0}} \tag{4}
\end{equation*}
$$

By a similar argument, or thence by the symmetry of the conditions on C_{0} and D_{0} to those on C_{1} and D_{1},

$$
\begin{equation*}
\overline{f \varepsilon D_{1}} \tag{5}
\end{equation*}
$$

Thus there is no separation of all natural numbers into two disjoint recursively enumerable sets D_{0} and D_{1} such that $C_{0} \subset D_{0}$ and $C_{1} \subset D_{1}$.

[^1]This of course implies, and by the theorem for recursive predicates and quantifiers ${ }^{9}$) analogous to Souscin's theorem for analytic and Borel sets ${ }^{10}$) is actually equivalent to, the statement that C_{0} and C_{1} cannot be separated by any general recursive set.

The root of this example is Rosser's method ${ }^{11}$) of weakening the hypothesis of ω-consistency to simple consistency for Gödel's proof of the existence of an undecidable proposition in a formal system containing arithmetic ${ }^{12}$). The author mentioned previously that Rosser's form of Gödel's theorem (as well as the original form) can be brought under a general theorem on recursive predicates and quantifiers ${ }^{13}$). The present result is obtained by rearranging the argument to make it symmetrical between the proposition and its negation. A discussion of it from this standpoint is included in another manuscript by the author. Upon seeing that manuscript, Mostowski pointed out the contrast to a theorem holding for analytic and Borel sets.

[^2]
[^0]: *) Presented to the American Mathematical Society, October 29, 1949. The first paragraph of this note is taken essentially from a letter of Mostowski to the author, dated 6 June 1949. Cf. the concluding paragraph.
 ${ }^{1}$) Andrzej Mostowski, On definable sets of positive integers, Fundamenta Mathematicae, 34, 81-112 (1946), and On a set of integers not definable by means of one-quantifier predicates, Annales de la société polonaise de mathématique, 21, 114-119 (1948).
 ${ }^{2}$) See p. 52 of N. Lusin, Sur les ensembles analytiques, Fundamenta mathematicae, 10, l-95 (1927); or Casimir Kuratowski, Topologie I, Monografie Matematyczne, Warsaw-Lwów 249 (1933).
 ${ }^{3}$) The example does not go against the parallelism between the theory of recursive predicates and quantifiers and the corresponding theory formulated by Mostowski 1946^{1}) in terms similar to the theory of projective sets. In § 6 of Mostowski's paper it is shown that these theories are equivalent, unless we admit as the basic system S for his theory one which does not satisfy two recursivity conditions (R_{1}) and (R_{2}). All ordinary (constructive) formal systems for arithmetic satisfy these conditions.
 ${ }^{4}$) S. C. Kleene, Recursive predicates and quantifiers, Transactions of the American Mathematical Society, 53, 41 - 73 (1943).
 ${ }^{5}$) This $(x)_{i}$ is a primitive recursive function of x and i; in the notation of S. C. Kleene, General recursive functions of natural numbers, Mathematische Annalen, 112, $727-742$ (1936), no. 6, p. 732, $(x)_{i}=i+1 G l x$.

[^1]: ${ }^{6}$) See e.g. Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik, 38, 173-198 (1931), Theorems II and IV.
 ${ }^{7}$) Kleene $1936{ }^{5}$) Theorem III. Members of the sets C_{0} and C_{1} are easily found; e.g. if we take $x=x \& y=y$ as the $R(x, y)$ in Kleene $1943{ }^{4}$) Theorem I , then (Ey) $W_{0}\left(2^{g} \cdot 3^{f}, y\right)$ and (Ey) $W_{1}\left(2^{f} \cdot 3^{g}, y\right)$.
 ${ }^{8}$) Kleene $1943{ }^{4}$) Theorem I.

[^2]: ${ }^{9}$) Kleene $1943{ }^{4}$) Theorem V, or p. 290 of Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bulletin of the American Mathematical Society, 50, 284-316 (1944), or Mostowski $1946{ }^{1}$) 5.51. The present application is valid intuitionistically.
 ${ }^{10}$) M. Souslin, Sur une définition des ensembles mesurables B sans nombres transfinis, Comptes Rendus hebdomadaires des séances de l'Academie des Sciences, Paris, 164, 88-91 (1917), Theorem III; Kuratowski $1933{ }^{2}$), p. 251 Corollary 1.
 ${ }^{11}$) Barkley Rosser, Extensions of some theorems of Gödel and Church, The Journal of Symbolic Logic, 1, $87-91$ (1936), Theorem II.
 ${ }^{12}$) Gödel $1931{ }^{6}$) Theorem VI.
 ${ }^{13}$) Kleene $1943{ }^{4}$) p. 64.

