A SYMMETRIC FORM OF GÖDEL'S THEOREM *)

BY

S. C. KLEENE

(Communicated by Prof. L. E. J. BROUWER at the meeting of April 29, 1950)

It has been remarked, particularly in articles of MOSTOWSKI¹), that recursively enumerable sets behave surprisingly similarly to analytic sets and general recursive sets to Borel sets. It is a theorem of LUSIN that two disjoint analytic sets can always be separated by a Borel set, i.e. this Borel set contains one of the given analytic sets and is disjoint from the other ²). We shall construct two disjoint recursively enumerable sets C_0 and C_1 which cannot be separated by a general recursive set. This example shows that there is no exact parallelism between the two theories ³).

We actually establish the following property of the sets C_0 and C_1 , which is stronger constructively: Given any two disjoint recursively enumerable sets D_0 and D_1 such that $C_0 \subset D_0$ and $C_1 \subset D_1$, there can always be found a number f such that $\overline{f \in D_0 + D_1}$.

Let T_1 be the primitive recursive predicate so designated in a previous paper by the author ⁴), and let $(x)_i$ be the number of times x contains the i + 1-st prime number as factor (0, if x = 0)⁵). Let predicates W_0

⁴) S. C. KLEENE, *Recursive predicates and quantifiers*, Transactions of the American Mathematical Society, 53, 41-73 (1943).

^{*)} Presented to the American Mathematical Society, October 29, 1949. The first paragraph of this note is taken essentially from a letter of MOSTOWSKI to the author, dated 6 June 1949. Cf. the concluding paragraph.

¹) ANDRZEJ MOSTOWSKI, On definable sets of positive integers, Fundamenta Mathematicae, 34, 81-112 (1946), and On a set of integers not definable by means of one-quantifier predicates, Annales de la société polonaise de mathématique, 21, 114-119 (1948).

²) See p. 52 of N. LUSIN, Sur les ensembles analytiques, Fundamenta mathematicae, 10, 1-95 (1927); or CASIMIR KURATOWSKI, Topologie I, Monografie Matematyczne, Warsaw-Lwów 249 (1933).

³) The example does not go against the parallelism between the theory of recursive predicates and quantifiers and the corresponding theory formulated by MOSTOWSKI 1946¹) in terms similar to the theory of projective sets. In § 6 of MOSTOWSKI's paper it is shown that these theories are equivalent, unless we admit as the basic system S for his theory one which does not satisfy two recursivity conditions (R_1) and (R_2) . All ordinary (constructive) formal systems for arithmetic satisfy these conditions.

⁵) This $(x)_i$ is a primitive recursive function of x and i; in the notation of S. C. KLEENE, General recursive functions of natural numbers, Mathematische Annalen, 112, 727-742 (1936), no. 6, p. 732, $(x)_i = i + 1$ Gl x.

and W_1 be defined thus,

$$\begin{array}{ll} W_0 \left(x, \, y \right) \equiv T_1 \left((x)_1, \, x, \, y \right) & \& & (z) \ \{ z \leqslant y \to \overline{T}_1 \left((x)_0, \, x, \, z \right) \}, \\ W_1 \left(x, \, y \right) \equiv T_1 \left((x)_0, \, x, \, y \right) & \& & (z) \ \{ z \leqslant y \to \overline{T}_1 \left((x)_1, \, x, \, z \right) \}, \end{array}$$

and the sets C_0 and C_1 as follows,

$$C_0 = \hat{x} (Ey) W_0 (x, y), \qquad C_1 = \hat{x} (Ey) W_1 (x, y).$$

The predicates W_0 and W_1 are primitive recursive⁶); hence the sets C_0 and C_1 are recursively enumerable⁷). From $W_0(x, y_0)$ and $W_1(x, y_1)$ we can infer both $y_0 > y_1$ and $y_1 > y_0$; hence

(1)
$$(Ey) W_0(x, y) \& (Ey) W_1(x, y),$$

i.e. C_0 and C_1 are disjoint.

Consider any two disjoint recursively enumerable sets D_0 and D_1 such that $C_0 \subset D_0$ and $C_1 \subset D_1$. We can write $D_0 = \hat{x} (Ey) R_0 (x, y)$ and $D_1 = \hat{x} (Ey) R_1 (x, y)$ with R_0 and R_1 recursive.

Now we show that there is a number f such that $f \in D_0 + D_1$.

By the enumeration theorem for predicates of the form (Ey) R(x, y) with R recursive⁸), there are numbers f_0 and f_1 such that, if we put $f = 2^{f_0} \cdot 3^{f_1}$, then

(2)
$$(Ey) R_0(x, y) \equiv (Ey) T_1(f_0, x, y) \equiv (Ey) T_1((f_0, x, y)),$$

(3)
$$(Ey) R_1(x, y) \equiv (Ey) T_1(f_1, x, y) \equiv (Ey) T_1((f_1, x, y))$$

Assume: (a) $f \in D_0$, i.e. $(Ey) R_0(f, y)$. Then by (2): (b) $(Ey) T_1((f)_0, f, y)$. Also by (a) and the disjointness of D_0 and D_1 : (c) $\overline{f \in D_1}$, i.e. $(\overline{Ey}) R_1(f, y)$. Thence by (3), $(\overline{Ey}) T_1((f)_1, f, y)$; whence: (d) $(y) \overline{T_1}((f)_1, f, y)$. By (b) and (d), $(Ey) [T_1((f)_0, f, y) \& (z) \{z \leq y \rightarrow \overline{T_1}((f)_1, f, z)\}]$, i.e. $(Ey) W_1(f, y)$, i.e. $f \in C_1$. Since $C_1 \subset D_1$, therefore $f \in D_1$, contradicting (c). By reductio ad absurdum, therefore (a) is false; i.e.

(4)
$$\overline{f \varepsilon D_0}$$

By a similar argument, or thence by the symmetry of the conditions on C_0 and D_0 to those on C_1 and D_1 ,

(5)
$$\overline{f \varepsilon D_1}$$
.

Thus there is no separation of all natural numbers into two disjoint recursively enumerable sets D_0 and D_1 such that $C_0 \subset D_0$ and $C_1 \subset D_1$.

⁶) See e.g. KURT GÖDEL, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik, 38, 173–198 (1931), Theorems II and IV.

⁷) KLEENE 1936 ⁵) Theorem III. Members of the sets C_0 and C_1 are easily found; e.g. if we take x = x & y = y as the R(x, y) in KLEENE 1943 ⁴) Theorem I, then $(Ey) W_0(2^g \cdot 3^f, y)$ and $(Ey) W_1(2^f \cdot 3^g, y)$.

⁸) KLEENE 1943⁴) Theorem I.

This of course implies, and by the theorem for recursive predicates and quantifiers ⁹) analogous to SOUSLIN's theorem for analytic and Borel sets ¹⁰) is actually equivalent to, the statement that C_0 and C_1 cannot be separated by any general recursive set.

The root of this example is ROSSER's method ¹¹) of weakening the hypothesis of ω -consistency to simple consistency for GöDEL's proof of the existence of an undecidable proposition in a formal system containing arithmetic ¹²). The author mentioned previously that ROSSER's form of GöDEL's theorem (as well as the original form) can be brought under a general theorem on recursive predicates and quantifiers ¹³). The present result is obtained by rearranging the argument to make it symmetrical between the proposition and its negation. A discussion of it from this standpoint is included in another manuscript by the author. Upon seeing that manuscript, MOSTOWSKI pointed out the contrast to a theorem holding for analytic and Borel sets.

¹²) Gödel 1931⁶) Theorem VI.

⁹) KLEENE 1943 ⁴) Theorem V, or p. 290 of EMIL L. POST, *Recursively enumerable* sets of positive integers and their decision problems, Bulletin of the American Mathematical Society, **50**, 284 - 316 (1944), or MOSTOWSKI 1946 ¹) 5.51. The present application is valid intuitionistically.

¹⁰) M. SOUSLIN, Sur une définition des ensembles mesurables B sans nombres transfinis, Comptes Rendus hebdomadaires des séances de l'Academie des Sciences, Paris, 164, 88–91 (1917), Theorem III; KURATOWSKI 1933²) p. 251 Corollary 1.

¹¹) BARKLEY ROSSER, Extensions of some theorems of Gödel and Church, The Journal of Symbolic Logic, 1, 87-91 (1936), Theorem II.

¹³) KLEENE 1943⁴) p. 64.