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1. Introduction. 

Let, for x > 0, y ;;;;. 2, CP(x, y) denote the number of positive integers 
< x which have no prime factors < y. Information on CP(x, y) for large 
values of x and y can be obtained from several points of view. 

A. First, for x very large with respect to y (roughly log x > C yjlog2 y), 

the following elementary formula gives a satisfactory estimate. Putting 
rr p = Q, we have LEGENDRE'S formula 
1'<1/ 

cp (x, y) = ~ f1 (d) [J] 
and hence, for y ;;;;. 2, 

(1. 1) I cp (x, y)-x TI (I-.!.) I < L (~- [~l) < L 1 = 2"(1/) < 21/. 
1'<1/ P dlQ - dlQ 

B. On the other hand, if x is relatively smalI, the information comes 
from the prime nu mb er theorem. If y < x < y2, the uncancelled elements 
in the sieve are exactly the primes in the interval y < p < x. Starting 
from here, A. BUCHSTAB 1) derived estimates for CP(x, y) in the regions 
y2 < X < y3, y3 < X < y4, ... , y" < x < yn+1, .... He gave, however, 
no estimates holding uniformly in n. In the present paper these will be 
achieved, owing to several improvements on BUCHSTAB'S method. 

BUCHSTAB'S result was the following one. Let, for u ;;;;. 1, the function 
w(u) be defined by 

(1. 2) 
~ w (u) = u-I, 

(:u {uw (u)} = w (u-I), 

(1 < u < 2) 

(u;;;;' 2) 

1) Rec. Math [Mat. Sbornik], (2), 44, 1239-1246 (1937). BUCHSTAB'S work 
was partly duplicated by S. SELBERG (Norsk. Mat. Tidsskr. 26, 79-84 (1944)). 
SELBERG also proved (cf. (1.16) below) that X-I C/J(x,y) log y is uniformly bounded 
for x ~ y ~ 2 (Norske Vid. Selsk. Forh., Trondhjem, 19 (2), 3-6 (1946)). 

The present paper can be read independently from these publications. 
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where for u = 2 the right-hand derivative has to he taken. Then for 
u> 1, u fixed, BUCHSTAB proved: 

(1. 3) lim cp (y", y) y-U log y = w (u). 
II~OO 

It is not very difficult to derive from (1. 2) that lim w(u) exists (see 
,,~oo 

(1. 10) helow). Furthermore, since we have 2) 

(1. 4) TI (1- 2.) (Xl e-Y log y, 
1' < 1/ P 

where y is EULER'S constant, it can he expected that 

(1. 5) lim w (u) = e-Y. 
,,~oo 

Namely, if we put 

(1. 6) cp (x, y) = x TI (1- 2.) . tp (x, y), 
1'<1/ P 

we ohtain from (1. 1) and (1. 3), respectively 

lim tp (y", y) = 1, lim lim tp (y", y) = eY lim w (u). 
u--+oo u--+oo 11--+00 u--+oo 

Formula (1. 5) can he estahlished indeed. It will follow from the closer 
investigation of tp(x, y) to he carried out in the sequal. A direct proof can 
also he given (section 4). 

In section 2 we shall prove 3) 

" (1. 7) Itp (y", y)-eY log y f yt-u W (t) dtl < OR (y) (u ;;;;. 1, y ;;;;. 2). 
1 

Here w(t) is BUCHSTAB'S function, defined hy (1. 2). R(y) is a positive 
function satisfying R(y) t 0 for y _ 00, R(y) > y-l and 4) 

(1. 8) j 
~ (y) -li y I < y R (y) jlog y 

fin (t) -li ti· t-2 dt < R (y) 
11 

(y;;;;' 2) 

(y;;;;' 2). 

Suitahle functions R(y) are known from the theory of primes, for 
instance R(y) = 0 exp (-0 log" x), with " = l5) or ,,= .~ - e 6), and ,,= 1 
if the RIEMANN hypothesis is correct. 

2) See A. E. INGHAM, The Distribution of Prime Numbers, London, p. 22 (1932). 
3) The C's are absolute constants, not necessarily the same at each occurrence. 
4) As usual, :n (y) denotes the number of primes ~y; li Y denotes the logartihmic 

integral. 
6) . See INGHAM loc. cito p. 65. 
8) N. TCHUDAKOFF, C. R. Acad. Sci. URSS, N. s. 21, 421-422 (1938). 
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From (1. 7) we can deduce that 

(1. 9) IV' (y", y)-11 < G r-l (u) + GR(y) (u;;;' 1, y;;;' 2). 

This follows from the behaviour of the function w(t). In a previous paper 7) 
we proved that lim w(t) exists, and, if we denote it by A, that 

t_oo 

(1. lO) w(u) = A + 0 {r-l (u + In. 
This can also be proved independently in a few lines. If we write (1. 2) 
in the form u w'(u) = - w(u) + w(u - 1), we infer that 

w' (u) < U-I Max I w' (t) I (u;;;' 2). 
u-l~t~u 

It follows that w'(u) is bounded for u 2 2. Denoting the upper bound 
of Iw'(t) I for u < t < 00 by M(u), we find M(u) < U-I M(u -1) (u ;;;. 3), 
and so M(u) < G T-I(U+ 1). Now (1. 10) easily follows. 

The error-term in (1. 10) is certainly not the best possible. The right 
order is probably something like exp (- u log u - u log log u). 

It easily follows from (1. lO) that 

" I log y f yt-u w(t) dt-A 1< G r-l(u) + Gy-l (u;;;' 1, y;;;' 2). 
I 

Now (1. 7) leads to 

(1. ll) 1V'(y", y)-eY A I < G r- l (u) + G R(y) (u;;;' 1, y;;;' 2). 

Take a fixed value of y, and make u ~ 00. Comparing the result with 
(1. 1) we find leY A -11 < G R(y) (y;;;' 2), and hence A = e-l'. This 
proves (1. 5) and (1. 9). 

C. There is a third approach to the problem of CP(x, y). Put 

00 

C (8) TI (l-p-') = L Cn n-', (Re 8> 1), 
p < v n~l 

then 

(1. 12) cp (x, y) = L Cn , 
n~:r 

and this sum can be evaluated by contour integration. This will be 
exposed in section 3. There is nothing new in the method which is quite 
familiar from the theory of DIRICHLET series. The result has some interest, 
since, for u = (log x)/log y not too large, it does not fall far from (1. 9). 
We shall prove in section 3, namely, that 

(1. 13) 
~ I V' (y", y) -11 < G loga y. e--ulollu-ulolllogu + Cu 

? (1 < u < 4 y' /log y; y ;;;. 2). 

I) N. G. DE BRUIJN, On some linear functional equations, Example 1. To he 
published in Publicationes Mathematicae, Debrecen. 
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On the other hand we shall show that 

(u> 4ylJlog y; y;> 2). 

For u> e-l y log-2y, however, (1. 1) gives a better result than this one, 
namely 

(1. 15) I"P (x, y) -11 < OX-1H 

In section 3 we have to make the restrictions y ;> e2 , u> 2e, but it 
is easily seen from (1. 9) and (1. 15) that in (1. 13) and (1. 14) these 
restrictions may be removed. 

It is easily inferred from the results of methods Band C that there 
is a positive constant a, such that 

(1. 16) (y;> 2, u;> 1). 

Namely, in (1. 9) we can take R(y) = Oexp (- 0 logl y). Hence (1. 16) 
holds, with a = 1, for y ;> 2, 1 ,,;;;; u .;;;; 0 logl y. On the other hand, if 
u> 0 logt y, we have log3 y < 0 u6 < Oe". Consequently, by (1. 13) 
and (1. 14), we have 

I "P (y", y) -11 < 0 Max (e---" log "-1.1l0g 1011 "+Cu, e-t" 1011 11). 

This proves (1. 16), with a = t log 2. 

BUCHSTAB considered, in the paper quoted before, the more general 
problem of the uncancelled numbers which belong to a given arithmetical 
progression. Suppose k ~ 1, (l, k) = 1, and let f/>I(k; x, y) denote the 
number of positive integers .;;;; x, which are = 1 (mod k), and which 
contain no prime factors < y. For q;(k) f/>I(k; x, y), where q;(k) is EULER'S 

indicator, he obtained the same result as for the case k = 1 described 
above. The present results can also be generalised that way. In section 2 
this can be carried out with very little alterations. Following BUCHSTAB, 

we can simply deal simultaneously with all f/>I(k; x, y), for k, x, y fixed. 
In section 3 we have to use DmICHLET'S L-series instead of the RIEMANN 

zeta function. In both methods real difficulties only arise when estimations 
holding uniformly in k are required. 

2. Prooi ol (1. 7). 

Suppose x;> y ;> 2. Clearly, for h;> 1 

(2. 1) f/> (x, y) = 2 f/> (~, p) + f/> (x, y"), 
11";7><0 p 

and hence, by (1. 6) 

(2. 2) 
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Here pand q run through the primes. Put 

W(O') depends on y also. 
Using a STIELTJES integral, we can write instead of (2. 2), for u :> 1, 

h 

(2. 3) 1p (y", y) = f 1p (y"-<1, y") dW (0') + 1p (y", yh) {I - W (h)}. 
1 

We first estimate W(O'). We have for 0':> 1, if :n:*(y) denotes the number 
of primes < y (not .;;;;; y): • 

log {P (y")jP (y)) = :L log (1-!) = .f log (1- y-I') d:n:* (yl') = 
1/';;1><1/" p 1 

" ." yl' logy 
= ! log (1- y-I') d {:n:* (yl') - li yl'} + [ log (1 - y-I') log yl' d f-l = 

" 
= log (l-y-I'){:n:* (yl') -li yl'} I~- I ~~~ {:n:* (yl') -li yl'} d,u-log 0'+ 0 (~). 

1 

By (1.8) we now find 

(2.4) 10' P (y")jP (y) -11 < 0 R (y) (0' :> 1 , y:> 2) 

Hence we have 

(2.5) IW(O')-I+O'-ll <OR(y). (0' :> 1 , y;> 2) 

An approximate solution of (2. 3) is O(y", y), where 
.. 

(2.6) o (y", y) = eY log y . f y'-lJ, w (t) dt, 
1 

and w(t) is given by (1. 2). In order to show this, we first evaluate 

h 
Dl (u; y; h) = 0 (y", y) - f 0 (y"-<1, y") 0'-2 dO' - h-1 0 (y", '!I') 

1 

for 1';;;;; h.;;;;; lu. We have D(u;y; 1)= 0, and 

~ ~ 
()h Dl (u; y; h) = - h-2 0 (y"-\ '!I') + h-20 (y", '!I') - h-1 ~h 0 (y", '!I'). 

The right-hand-side can be evaluated; using (2. 6) and (1. 2) we find 
it to be - eY h-1 yh-lJ, log y. Therefore 

h 
(2. 7) I Dd u; y; h) I = eY log y f t-1 y'-lJ, dt .;;;;; eY'!I'-IJ,. 

1 

Next we put 
h 

D3 (u; y; h) = 0 (y", y) - f 0 (y"-<1, y") dW (0') - 0 (y", '!I') {1-W (h)} = 
1 

= Dl (u; y; h) + D2 (u; y; h) 
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where 

By partial integration, using (2.5) and using W(I) = 0, we obtain 

h 

(2.8) ID2 (u; y; h) I <; CR (y) {IO (y",yh)-O (y"-h,yh) I + f I! 0 (yu-a,y")I dG}. 
1 

In the sequel we shall need the following inequality 

(2.9) IDa (u; y; ~) I <; C k-2 R(y), (k= 2, 3, 4, ... ; k <; u < k+ 1; y;;' 2) 

C not depending on k. As to the contribution of Dl> this follows from (2. 7), 
since y.l = O{R(y)}. For an estimate of D2 we have to use (2. 8), (2. 6) 
and (1. 10); we omit the verification, which is straight forward. 

The difference tp(y", y) - O(y", y) = 'YJ(Y", y) satisfies (h ;;. 1): 

h 

(2. 10) 'YJ (y .. , y) = f 'YJ (y .. -a, y") dW (G) + 'YJ (y", yh) {1-W (h)} - Da (u; y; h). 
1 

For 1 <; u <; 2 the function tp is known; we obtain 

'YJ (y" y) = n(yU)-n*(y) 
, yuP(u) 

.. dt er log y f yt-u_ 
1 t 

(1 <; u <; 2) 

We have lim P(y) log y = e-r, and hence, by (2. 4), 
11-+00 

P(y) = e-r(1 + O{R(y)})jlog y. 

From (1. 8) it now readily follows that 

1'YJ(y", y) I < C R(y) (y ;;. 2, 1 <; u <; 2) 

Now put, for k= 1,2,3, ... , y;;' 2 

Sk (y) = sup I 'YJ (t", t) I, 
k"'''<k+l 

t~1f 

whence Sl(y) < C R(y) (y ;;. 2). We apply (2. 10) for k = 2, 3, 4, ... , 
k <; u < k+ 1, with h= ujk; using (2.9) we obtain 

(k= 2, 3, ... ; y;;' 2). 

It follows that, for k = 1,2,3, ... ; y;;' 2, 

k 

Sk(y) < {C+ C 2: n-2}. R(y) < CR(y). 
n~2 

Consequently 

I'YJ (y", y)1 < C R(y), 

which proves (1. 7). 

(y ;;. 2; u;;. 1) 
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3. Prooi ol (1. 13) and (1. 14). 

Throughout this section we suppose x;> y ;> e2, u = (log x)/log y, 
whence u ;> 1. We introduce the positive numbers a, Tand À, satisfying 

1 < a < 2, T > 2, 1 < À < t log y, 

and we put 

b = 1 - À/log y (whence t < b < 1). 

For a, Tand À we shall choose suitable values later on. For simplicity 
we assume x to be half an odd integer. In the final results this restriction 
is easily eliminated. 

The constants implied in our O-symbols are absolute constants. 

It is easily verified by contour integration that 

a+iT 00 

~ J' (~)B ds = E (x n) + 0 ((~)a f e-~Ilog:rlnl dl; } = 
2m n 8 ' n (l;2+T2)t 

a-iT 0 

uniformly for n = 1,2,3, .... Here E(x, n) = 1 or 0 according to n < x 
and n > x, respectively. 

It follows that (cf. (1. 12)). 

<I+iT 

(3. 1) 

1 f n· ( l)dS !/J(x,y) = -2' x'C(s) 1-. -+ 
:n:~. P<1I P 8 

a-tT 

00 

+ 0 ( )' xa Min ( 1 10 1 ) } 
....,; na T I log x/n I' g T ilog x/n I . 
n=l 

The best possible extimate for the O-term in (3. 1) is 

(3. 2) ; 0 ( log a~l + log Min (x, T) + li {Max (3, xa-l)} } . 

We omit the verification, which can be carried out by splitting the sum 
into three parts, corresponding to n < t x, t x <;; n < 2 x, n;> 2 x, 
respectively. 

The integral in (3. 1) can be evaluated by means ofthe residue theorem; 
we obtain 

xII (l_p-l) +Jt +J2 +Ja. 
P<1I 

where 
a-iT 

J a = - 2~i f . 
b-iT 
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The most important contribution is J I . We have 

b+iT 

(3. 3) f 1 C (8) :81 = 0 (log'!' T) + 0 (log l~b)' 
lr-iT 

This is easily deduced from the fact that, for Tl> 2, l .;;;;; b <; 1, 

whereas the second O-term in (3. 3) arises from the pole of C(8) at 8 = 1. 
Furthermore, for 8 = b + it we simply use 

and, as n(~) < 2li ~ + C, 

11 11 

log TI (1 + p-b) <; 0 (1) + f ~-b d n (~) .;;;;; 0 (1) + 2 f ~-b d li ~ = 
'1><11 Z Z 

l 

= 0 (1) + 2 f e'l 1]-1 d1] = 0 (1) + 2 li el + 2 log log y - 2 log Ä. 
(l-b)logZ 

Summarizing, we have 

(3. 4) J I = 0 { xe-lu. 2 li el . (lOfzY)Z (log'!' T + log lOf Y) } . 
For Jz we use 

which leads to 

(3. 5) 

The same holds for J 3, of course. 
The difference CP(x, y) - x TI (1 - p-1) is less than the sum of (3.2), 

'1><11 

(3. 4) and (3. 5). Simplifying our result by specialization 

a = 1 + (log x)-l, 

we can deduce 

cp (x, y) - x TI (1_p-1) = 0 {x logZ y . (Äu)'/, . exp (- Äu + 2li el)}. 
'1><11 

By (1. 6) and (1. 4) we now obtain 

(3.6) 'IJ' (x, y) -1 = 0 {loga y . (Äu)'/' . exp (- Äu + 2li el)}. 

We are still free to give Ä any value in the interval 1';;;;; Ä .;;;;; llog y. 

8) TITCHMARSH, The Zeta Function of RIEMANN. London, p. 31 (1931). 
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N ow assume that u > 2 e. Then the minimum of - A.U + 2 li eÄ for ), > 1 
is attained for A. = .lo, defined by 

(3. 7) A.o u = 2 e\ A.o > l. 
There we have (put 2 ~-l é = 1]) 

~ u 
li eÀo = 0 (1) + f é ~-l d~= 0 (1) + t f (I_~-l)-l d1] = 0 (u). 

1 2. 

Furthermore 

.lo = log (t u.lo) > log t u + log log tU > log u + log log u + 0(1), 

whence it follows 

(3.8) exp (- A.oU + 2li e .... ) < exp {-u log u-u log log u + 0 (u)}. 

This result can be applied to (3. 6) whenever the solution of (3. 7) is 
less than t log y, that is for 

2 e < u <; 4 yijlog y. 

In that region we obtain, since .lo u = O(eU
), 

tp (x, y) -1 = 0 (loga y . e-uloIlU-r,lollloltu+Cu). 

H, however, u > 4 yijlog y, we take A. = t log y, and we infer from (3. 6) 

tp (x, y) -1 = 0 (e-l/. u 10K V) = 0 (x-l/.). 

4. Direct prooI ol (l. 4). 

We have established by combination of the results of methods A 
and B (cf. section 1), that 

(4. 1) lim w (u) = e-Y. 
u~oo 

A purely analytical proof can also be given. The function 

00 x 
(4.2) h (u) =.r exp {-ux-x + f (e-t-I) t-1 dt} dx 

o 0 

is analytical for u > - 1; it satisfies the equation 

(4.3) U h' (u-I) + h (u) = 0 (u> 0). 

The expression 
a 
f W (u) h (u) du + a w (a) h (a-I) = (w, h) 

a-I 

does not depend on a for a > 2. This is easily verified by differentiation, 
using (l. 2) and (4.3). We now evaluate (w, h) in two ways. First let 
a -+ 00. Then we have w(a) -+ A, by (l. 10), and h(a) '" a-I by (4.2). 
Hence (w, h) = A. Secondly, take a = 2. We find 

2 

A = f u·- 1 h(u) du+ h(I). 
1 
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In virtue of (4.3) we obtain 

2 
A = - f hl (u-I) du + h (1) = h (0) = lim u hl (u-I) = 

1 u~O 

00 z 
= -lim u f exp {-ux+ f (e-t-I) t-1 dt+ log x} dx. 

u~O 0 0 

Here we have 

{ Jz e-t 1 } 
~~ ---F- dt + log x. = - y, 

o 

and (4. 1) easily follows. 
The method used here consists of the construction of an "adjoint" 

equation (4.3), such that there is an invariant inner product (w, h) for 
any pair of solutions w, h of the original equation and of the adjoint 
one, respectively. This method was decisive in the author's researches 
on the equation FI(x) = e..,+/J F(x -1), which are unpublished as yet. 

Mathematisch Instituut 
der Technische Hogeschool, 
Delft, Netherlands. 


