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1. 1niroduciion. 

We shall be concemed with equations of the type 

I 
(1. 1) f (x) = f K (x, t) f (x-t) di. 

o 

The problem is to impose conditions on K which guarantee that every 
solution f(x) will be convergent, i.e. lim f(x) exists. Throughout the 

paper we suppose that the kemel is absolutely integrable with respect 
to x and i for O:::Ç x <: a, 0 <: i <: 1 and any a> O. Furthermore we shall 
assume that, for x ~ 1, 

1 

(1. 2) K(x,i);;;;' 0 (0 <: i <: 1); K(x,t)= 0 (t> landt < 0); f K(x,i)di= 1. 
o 

A function f(x) will be called a solution, if it is measurable and bounded 
on any finite interval 0 :::Ç x <: a, and if it satisfies (1. 1) for x ~ 1. 
Since we do not assume K (x, i) to be uniformly bounded, a special diffi
culty arises, which is demonstrated by the following example. Take 

l 
K (x, t) = 1 if x is an integer 

(1. 3) K (x, i) = (x- [X])-l for 0 <: i <: x - [x] if x is not an integer 
K (x, t) = 0 otherwise. 

Now solutions f(x) can be constructed from arbitrary sequences 
Cl' C2, C3, • •• of real numbers by taking f(x) = Cn for n - 1 < x <: n. 

In th is example f(x) is not uniquely determined by its values on the 
interval 0';;;; x .;;;; 1. Nevertheless the kemel (1. 3) has a stabilizing 
effect: every continuous solution is constant for x ~ 1. 

In order to avoid the difficulty shown by this example, we shall consider 
regular solutions only. A solution f(x) is called regular, if, for all values 
of m, Mand a ~ 1 the following statement holds true: 1f m :::Ç f(x) <: M 

aZmosi everywhere on a-I <: x <: a, ihen we have m';;;; f(x) .:;;;; M for 

x > a. It follows that a regular solution is uniquely determined by its 
values on 0 .;;;; x .;;;; 1. 

The problem as to which kemels have the property that any solution 
is regular, will not be considered in this paper. Neither shall we deal 
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with the question whether any function I(x) given on 0 <: x <: 1 can 
be continued to a solution 1). 

In practice the two following theorems are of ten sufficient. 

Theorem 1. Every continuous solution is regular. 

Pro of. Let I(x) be continuous, and assume I(x) <: M for a-I <: x <: a. 

Assume that Xl > a and l(xI ) > M. Let Xz be the least possible number 
such that a < X 2 <: Xl> l(x2 ) = l(xI ). Now we have I(x) < l(x2 ) for 
X 2 - 1 <: x < x2• Apply (1. 1) with X = x2' and a contradiction follows. 

Theorem 2. 11, lor any linite A > 0, tke kernel K (x, t) is bounded 
over 1 <: x <: A, 0 <: t <: I, tken every solution is regular . 

• 
Proof. We can find E > 0 (E depending on A), such that f K (x, t) dt< 1 

o 
for I <: x <: A. Now assume a> I, A> a, and I(x) <: M for x < a. 
By the definition of a solution, I(x) is bounded for a <: x <: a + E; denote 
its upper bound by MI' Assume MI > M. By (1. I) we find, for a <: x <: 
<: a + E, that I (x) <: M + 1 (MI - M), which means that the upper 
bound for a <: x <: a + E would be less than MI' This being contra
dictory, we infer MI <: M. The theorem now follows by induction. 

A kernel K (x, t) will be called stabilizing, if every regular solution is 
convergent. In sections 2 and 3 we shall give sufficient conditions for a 
kernel to be stabilizing. 

In section 4 we give two ex am pIes ; of which the first one is the case 
where K (x, t) does not depend on x. 

We here refer to the possibility of extending theorem 3 (section 2) 
to the case of an equation involving a Stieltjes integral, VIZ. 

1 

I (x) = f I(x-t) dW" (t). 
o 

Here, for any x ~ I, W,,(t) has to be increasing, and W,,(O) = 0, W,,(I) = I, 
and we content ourselves with the consideration of the behaviour of 
continuous solutions I(x). Only formal changes in the statement and 
proof of Theorem 3 are necessary. Again, every continuo us solution 
is regular, provided that for no value of x we have 

W,,(t) = 0 (0 <: t < I), W:z:(I) = 1. 

2. Sutticient condition lor a kernel to be stabilizing. 

In order to show how far we can certainly not go, we give two examples 
of kernels with a regular but non-convergent solution. 

A. If we take I(x) = x~ 1 sin 2nx, we can construct, in very many 

ways, kernels admitting I(x) as a solution. But if x aproaches an integer, 

1) If K is uniformly bounded, these problems are relatively simpie. See 
Volterra, Leçons sur les equations intégrales, (Paris 1913). 
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we cannot avoid concentrating the power of K(x, t), considered as iL 

function of t, near the points t = 0 and t = 1. 
Indeed, the conditions of both theorem 3 and theorem 4 will exclude 

too heavy concentrations of power at a finite number of points, for too 
many values of x. 

B. In the following example K(x, t) is uniformly bounded, but not 
stabilizing. Let N be a natural number. Put I(x) = 0 if O~~ Nx- [Nx] < i, 
I(x) = 1 if i < Nx- [Nx] < 1. Take K(x,t)= 2 if x ~ 1, 0 < t < 1 
and I(x) = I(x - t); K (x, t) = Ootherwise. Clearly K satisfies (1. 2), and 
I(x) is a regular solution which does not converge. 

This example shows that, in the following theorem, the constant y 

may not be taken ~ i. 
Theorem 3. Let y be a positive constant <!, and let, lor x ~ 1, 

cp (x) be a continuous lunction satislying 
00 

(2. 1) CP(x);;;;'O (x;;;;' 1), L'YJn=oo 
n=1 

where 
'YJn = min cp (x). 

fI.~:Z:~B+2 

Now a sullicient condition lor K(x, t) (satislying (1. 2)) to be stabilizing, 
is toot 

(2.2) f K(x,t) dt;;;;. cP (x) 
E 

lor any x ~ 1, and lor any measurable subset E ol the interval 0 ~ t ~ 1 
whose measure is ~ y. 

Proof. Let I(x) be a regular solution. For x ~ 1, we denote by M(x) 
and m(x), respectively, the effective maximum and minimum of I(u) 
for x-I ~ u ~ x. It immediately follows from the definition of regul
arity, that M(x) is non-increasing, and m(x) non-decreasing. 

The difference 
.t. (x) = M (x)-m (x) 

is also non-increasing. Putting 

'" f I(u) du = Wl(x) 
",-1 

we have, for x > 1 almost everywhere 

(2. 3) I! 9n (x) I < ~ (x) 

Lemma 1. 11 n is a positive integer, we can lind a number y in the 
interval n + 1 < Y ~ n + 2 such toot either 

(2.4) 9n(x) < M(n)-! ~(n) lor all x in y-l < x < y, 
or 

(2.5) 9n(x);;;;' m(n)+!.t.(n) lor all x in y-l < x < y. 
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Proof. Assume (2. 4) to be false for all y in n + 1 .;:;;; Y .;:;;; n + 2. 
Then it is false for y = n + t, and we can find a number Xo (n + ! .;:;;; 
.;:;;; Xo .;:;;; n + t), such that Wl(xo) > M(n) - iL'-.(n). 

Now by (2.3) we have, for xo-! .;:;;; x';:;;; xo+!, 

9J1 (x) > M (n)-i L'-. (n)-! L'-. (n) = m(n) + i L'-. (n). 

Hence we can take y = Xo + ! in (2. 5), which proves the lemma. 

Lemma 2. Let, lor a lixed value ol x, À.l ? 0 be such that, lor 

any subset E ol 0';:;;; t .;:;;; 1 ol measure f1(E) = ~ ~~) =-~ (~) we have 

I K (x, t) dt ? À.l . Let ~ ? 0 be such that lor any subset E' ol measure 
E 
'I 9J1 (x) - m (x) 

f1.(E ) = M ( ) ( ) we have I K (x, t) dt ? À.2• Then we have x -m x Ef 

I(x) ';:;;;M(x)-À.l{M(x)-m(x)} 

I(x);;;' m(x}+ À.2 {M(x)-m(x)}. 

Proof. We only show the truth of (2. 6a); the other part is analogous. 
Choose E such that it has the prescribed measure, and such that there 
is a number p with K (x, t) .;:;;; P for tEE, K (x, t) > p for t not on E. 
Let E be the complement of E. Now we have, by (1. 1), 

I(x) = I K(x,t) I(x-t) dt+ IK (x,t) I(x-t} dt. 
E E 

Furthermore 

I K(x,t){M(x)-/(x-t)}dt;;;' pf{M(x)-/(x-t)}dt, 
E E 

I K(x,t) {m(x}-f(x-t)}dt;;;. pI {m(x}-f(x-t)}dt. 
E E 

The sum of the right-hand-sides is zero, due to the choice of f1(E). 
Hence we óbtain 

I(x) .;:;;; m(x) I K dt+ M(x) IK dt= M(x)-{M(x)-m(x)} I K dt, 
E E E 

and the assertion follows. 

We now conclude the pro of of theorem 3. In accordance with lemma 1, 
first assume that there exists an y (n + 1 .;:;;; Y .;:;;; n + 2) such that (2.4) 
holds. Now apply (2. 6a) with À.l = 'YJn for all x in y - 1 .;:;;; x .;:;;; JI. 
We obtain that either for all x in y - 1 .;:;;; x ~ y 

(2.7) I(x)';:;;; M (x)-17n {M(x)-m (x)} 

or for some Xl (y - 1 .;;;: Xl .;:;;; y) 

(2.8) M(x1)-!1J/(x1) < 
M(x1)- m(x1) y. 

From (2. 7) we infer 

M (y) .;;;: (I-17n) M (y-I) + 17n m (y), 
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and so 
M (n+ 2) < (l-17n) M (n) + 17n m (n+ 2). 

Adding the non-negative number (1 -17n) {m(n + 2) - m(n)} to the 
right-hand-side, we obtain 

(2. 9) 

Now assume (2. 8) to be true. Aeeording to our previous assumption, 
(2.4) holds for x = Xt; eombining this with (2.8) we obtain 

M(xt )-y{M(x1)-m(xt )} < M(n)-1~(n) 
and henee, by n < xt < n+ 2, 

(2. 10) (l-y) M (n+ 2) + y m(xt)-m(n) < i ~ (n). 

And, sinee m(n) < m(xt ) ~ m(n + 2), we have 

ym(xt)-m(n)= y{m(xt )-m(n)}-(l-y) m(n) ;> -(l-y) m(n+2). 

It now follows from (2. 10) that 

3 
(2. 11) ~ (n+ 2) < 4 (l-y) ~ (n). 

Summarizing, the assumption that (2.4) is true for some y (n + 1 < 
< y < n + 2) leads either to (2. 9) or t~. (2. 11). The same thing ean be 
proved by assuming (2.5) to be true for some y (n + 1 < y < n + 2). 
The proof is analogous; we have to use (2. 6b) instead of (2. 6a). 

Henee, for n = 1,2,3, ... 

(2. 12) ~ (n+ 2) S 3 1 
~(n) < Max (4(I-y) , 1-17n S· 

By (2. 1) we have 

TI
OO 

MaxS 3 1- 1-0 
( 4 (1- )' 17k (- . 

k-l Y J 

Henee ~n --+ 0, and so M(x) and m(x) tend to the same limit, as x --+ (X). 

Sinee f(x) is a regular solution, we have m(x) < f(u) < M(x) for u ~ x 
(without exeeption for a nul-set.) Consequently lim f(x) exists, and 
the theorem is proved. x-+ 00 

3. Results obtained by studying iterated kernels. 

If K (x, t) is very small on sets of measure ~ 1, theorem 3 does not 
apply. Nevertheless we of ten can prove K (x, t) to be stabilizing by use 
of iterated kernels. 

These iterated kernels are not normalised by the eondition 
1 

f K(x,t)dt= 1, K(x,t)=O(t> 1). 
o 

Therefore we use the letters Q, R, S, T, U for sueh kernels; the letter K 
is reserved for normalised kernels. 
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Putting Q(l) (x, t) = K (x, t) (0 ,;;;;; t ,;;;;; I), we define Q(V) (x, t) by 

(3. I) 

Q(V) (x,t) = 0 for t > '11 ('11= 1,2,3, ... ) and for t < 0, 

00 

Q(V+l) (x, t) = f Q(V) (x, s) Q(l) (x-s, t-s) ds. 
o 

Then Q(V) (x, t) exists almost everywhere, and 

v 
Q(v) (x, t) :> 0 , f Q(V) (x, t) dt = 1. 

o 

Let I(x) be a regular solution of (1. I), then we have 

• 
(3.2) I (x) = f Q(V) (x, t) I(x-t) dt ('11 = 1,2,3, ... ; x:> '11). 

o 

Now, if m is a natural number, we take 

m 

(3.3) Km (x, t) = L Q(V) (mx, mt) , I(mx) = g(x) 
v~l 

and we 0 btain 
1 

(3.4) g(x) = J Km (x, t) g(x-t) dt (x:> I). 
o 

It is easily seen that Km (x, t) satisfies (1. 2) and that g(x) is a regular 
solution of (3. 4). Hence K (x, t) is stabilizing whenever Km (x, t) IS 

stabilizing. 
There are cases where theorem 3 applies to Km but not to K. 
We have also the possibility of incomplete iteration, which is demon

strated in the proof of theorem 4. 

Theorem 4. Let k(t) be a non-negative lunetion, absolutely integrable 
1 

over 0 ,;;;;; t ,;;;;; I, and such that f k(t) dt > O. Then, il K (x, t) ~ k(t) lor 
o 

all x ~ 0, 0 ~ t ~ I, then K (x, t) is stabilizing. 

Proof. We first assume that k(t) is continuous; the general case 
can be derived from this one. Then there are numbers a, b, C (0 ,;;;;; a < 
< b < I, C > 0), such that 

K(x,t) :> C (a';;;;; t ,;;;;; b , x:> I). 

Let the kemels R, S be defined by 

R(x,t) = C 

R(x,t) = 0 

(a ,;;;;; t ,;;;;; b , x :> I), 

(t < a and t > b ; x:> I). 

and S(x, t) = K (x, t) - R (x, t). Both Rand S are non-negative. We shall 
write 

00 

f R(x,t) f(x-t) dt= Rf, 
o 



819 

etc. Now we have, by incomplete iteration, 

1= RI+SI= R(RI+Sf) +SI= 

= R3 /+ WSI+ RSI+ SI= 

= R!"I+ Rm-lSI+ Rm-2SI+ ... + SI= 

= Rml+ Tml. 

Here the kernel R!" does not depend on x; it is a continuous function 
of t for ma .;;;; t .;;;; mb and it is positive for ma < t < mb. The kernel 
Tm(x,t) vanishes for t> B where B= (m-l) b+ l. 

If m is large enough, m> mo say, the union of the intervals (a, b), 
(2a, 2b), ... , (ma, mb) is a set of measure > ~- B. Hence for m> mo, 
the kernel 

u = m-1 (R+ Tl + W+ T 2 + ... + Rm+ Tm) 

has the following properties : 

u (x, t) :> 0 (x :> B , t:> 0) u (x, t) = 0 (x :> B , t> B) 
R 
.r U (x, t) dt = 1 
o 

R 

1 (x) = f U (x, t) I(x-t) dt (x:> B) 
o 

and finally, there is a positive constant c such that 

f U (x, t) dt > c 
E 

for any subset E C (0, B) of measure fl(E) ~ t B, and for all x ~ B. 
Now writing 

K* (x, t) = B-l U (Bx, Bt) , I(x) = g(Bx), 

we obtain g = K* g, and theorem 3 can be applied. K* is stabilizing, 
and hence K has the same property. 

If k(t) is not continuous, we may take it to be bounded (otherwise 
deal with Max {I, lc(t)} instead of k(t)). 

If Q<2l is the first iteration of K, we have 

1 
Q<2l (x, t) :> f k (s) k (t-s) ds = kl (t) (0 .;;;; t .;;;; 2 , x:> 1) 

o 

The function kl(t) is continuous. We can now apply the result we just 
proved; this asserts that the kernel Q<2l (2x, 2t) = K** (x, t) is stabilizing. 
It follows that K has the same property, and the theorem is proved. 

It is not difficult to prove, under the assumptions of theorem 4, that 
there is a positive constant A, depending on k(t) only, such that for 
any regular solution we have 

(3. 5) 1 (x) -lim I(t) = O(e- AX
) (x:> 1). 

1--+00 
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In order to get a simple result we did not, in the above theorem, 
exhaust the full strengthof theorem 3. Namely, we only applied it for 
'YJ" = constant. Furthermore, we a)so neglected the possibility of allowing 
m to tend slowly to infinity, as x -+ 00. But it is, however, very difficult 
to embody the results of these possibilities in a small number of theorems. 

4. Examples. 

a. If K (x, t) does not depend on x, theorem 4 can be applied immedi
ately. Furthermore every solution f(x) is continuous for x ~ 1, and, if 
m < f(x) < M on 0 < x < 1 almost everywhere, we have 

m ~ lim f(x) ~ M. 
x~l 

It follows that f(x) is regular (cf. the proof of theorem 1). 
We state the result obtained af ter a simple transformation m the 

following form: 

Theorem 5. Let k(t) be absolutely integrable and non-negative for 
o < t <; I,' and assume that A. is the real root of the equation 

1 

(4. 1) J k(t) e-Atdt= 1. 
o 

Let f(x) be measurable and bounded over every finite range 0 < x < a, and 
a8sume that 

1 

f(x) = J k(t) !(x-t) dt (x;;;;' 1). 
o 

Then f(x) is of the form 

! (x) = C eÀX + 0 (e(A-A),,), 

where A is a positive number depending on k only (cf. (3. 5)). 

b. The following functional equation arises in connection with a 
certain prime number problem 2). We shall devote a separate paper to 
it, but here we shall derive the things we can deduce from the present 
results. The equation is 

1 
(4.2) X F(x) = J F(x-t) dt (x> 1). 

o 

We can construct a solution Fo(x) of (4. 2) which is continuous, positive 
and non-increasing for x ~ o. Such a function can be constructed, for 
instanee, by taking 

(0 < x < 1) (x;;;;' 1). 

2) S. D. CHOWLA and T. VIJAYARAGHAVAN, J. lndian Math. Soc. (N.S.) 11, 
31-37 (1947). 

V. RAMASWAMI, Duke Math. J. 16, 99-109 (1949). 
A. A. BUCHSTAB, Doklady Akad. Nauk. SSSR (N.S.) 67, 3-8 (1949). 
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Let F(x) be an arbitrary solution of (4. 2) which is bounded and measur
able for 0 ::::;;; x ::::;;; a (any a). It is easily seen to be continuous for x ~ 1. 
Hence /(x) = F(x)/Fo(x) is a regular solution of 

(4.3) /(x) = J Foj7(~) /(x-t) dt. 
o x 0 x 

It is easily seen that the kern el 

(4.4) K (x t) = Fo (x-t) 
, x Fo(x) 

(0 .;;;; t .;;;; 1) 

satisfies (1. 2). For 0 ::::;;; t ::::;;; 1 we have, since Fo is positive and decre
asing, K(x,t) ~X-l. Therefore, we apply theorem 3, with 'Y}n=r/(n+2). 
It follows that /(x) tends to a limit as x -+ 00. Moreover from (2. 11) 
we infer 

/ (x) -lim /(t) = 0 (X-i), 
t-+oo 

although the O-term is by far not the best possible. So any solution of 
(4. 2) is of the form 

F(x) = {C + O(x-')} Fo (x). 
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