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§ 1. Introduction.

In a recent paper [1] B. MEULENBELD developed the theory of the
C-uniform distribution (mod 1) of the values of a function of n variables.
For the definition of this kind of distribution we refer to the paper
mentioned above. In this note the author also formulated a useful test
to establish the behaviour of a system of m functions of n variables with
regard to the C-uniform distribution (mod 1). We repeat here the C-test
in the special form (m = 1) in which it will be used in the present paper.

C-test.
Let n be a positive integer and let F be a sequence of m-dimensional
intervals:

(1) Q: 0<t, <T, (u=1,...,n),

where T, and the measure of @ tend to infinity if Q runs through F.

Let ft)=f(tq, ..., 1) be a function, defined for all (t)= (¢, ..., 1,)
of all Q.

Then it is necessary and sufficient for the C-uniform distribution (mod 1)
of the function f(t) in the intervals (1), that, for every integer h £ 0, f(t)
satisfies the relation:

1 1, In

270ih (1. by, ty) —
m_—Tng---Tngof”'Je i W dt, dty ... dt, = 0,

if Q runs through F.
In the present paper we shall prove the following Theorems.

L

Theorem I.
Let F be a sequence of m-dimensional intervals
Q: 0<tk<Tk (k= 1,2, ...,n),

where T\ (k=1,2, ...,n) — oo, if Q runs through F.

Let f(t)=f(t;, ..., %) be a function defined for all (t) of all Q.

Let f(¢) have first partial derivatives with respect to each t,, with the
property:

@ |62 2| < a1, for b 2% = 0 (@ fived),
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uniformly in (b, ..., t—ys tps1s - - -» t,), Where the M, are fixed positive
numbers (k= 1, ..., n).
Then {(t) is not C-uniformly distributed (mod 1) in the intervals Q of F.
For n=1 we get the following

Theorem II.
Let F be a sequence of intervals

Q: 0<t<T, with T — oo.
Let f(t) be a differentiable function, with the property:
[tf ()| < K for t >, >0,

where t, and K are fized numbers.
Then [(t) is not C-uniformly distributed (mod 1) in the intervals @ of F.

As an immediate consequence of Theorem II we have:

If {(t) (¢ = 0) is C-uniformly distributed (mod 1), then tf'(t) cannot be
bounded.

This Theorem II is a considerable improvement of a theorem we
proved in [2] (Theorem II).

The additional restrictive condition we made on ¢f(f) in the note
just mentioned can be omitted.

In order to prove Theorem I we again apply the C-test, but the
argumentation is quite different from that used in our previous papers.
In the present note we make use of the following

Lemma.
If p(u) (w = 0) ts a function with first and second derivative, if

lim 2% _ 5 (constant),
and
u @''(u) 8 bounded for u = u, (fized) = 0,
then
lim ¢'(u)= a.

For the proof of this lemma we refer to [3].
Theorem III.
Let F be a sequence of n-dimensional intervals
Q: 0t < T, (k=1,...,n),
where T, and the measure of Q tend to infinity if Q runs through F.

Let f(t) = f(t,, - . ., t,) be a measurable function defined for all (t) of all Q.
Let f(t) have a partial derivative with respect to t, with the property:

(3) tﬁ_ﬂtzLS’t;'"i)z(;#O,
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uniformly in (¢, .. ., t,_;), where c and p are fixed numbers, and 0 < p < 1.
Then f(t) is C-uniformly distributed (mod 1) in the intervals @ of F.
For n=1 we get

Theorem IV.
Let F be a sequence of intervals

Q: 0<t<T, with T — oco.
Let f(t) (¢ = 0) be a differentiable function with the property
Iim #ft)=c#0, 0<p <1

t—00

Then [(t) is C-uniformly distributed (mod 1) in the intervals @ of F.

This Theorem is a generalisation of Theorem III of [2], where we
assumed p = 0. N. H. KvuipPER reported us by letter that he also possesses
a proof of Theorem IV.

In § 2 we prove Theorem I, in § 3 Theorem III, while in § 4 we give
some examples.

We remark that Theorem IV does not hold if we take p= 1.

In this case f(¢) is not C-uniformly distributed (mod 1) as follows from
Theorem II.

§ 2. Proof of Theorem I.
We shall show that the expression

1 .
I= e [..[ @ritthto gy, .. di,

does not tend to zero, if @ runs through F.
Let us suppose that

T, T'n,
r= [...[ cos 2ahf(ty,....t,) db, ... dt,
110 .
0 0

tends to zero if @ runs through F. Then we should also have:

T, Tn

lim ... lim ff cos 2mhf(t, , ..., 1) di, ... dt, =

T 00 Tysoo T1:0:Tn
n 0 0

Tn
lim ... lim | lim 2 f {ﬁj] 008 2ahf(t;, .. , ) by ... dby | dt; | =

T —o00 Ty—00 LT ooTl
n 3> 1> 0 0

Tn

T,
lim ... lim [ lm 2 [[ cos 2ahHT,, g, ... 1) dty .. dty | =
0

T —o00 Ty—o0 - T'y—o0 Tz---Tn
nn 0

(as follows from the lemma and from (2) with k= 1)
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T

lim ‘lm ... lim —j {Ta f fncos DAhf(Ty, toyeesta) Ay .. dty | dty =

T,—>00 T”—wo Ty—>00 Ta

T, Tn
lim lim ... im o [ -] cos 2abf(Ty, Ty, by, ..., 1) dty ..ty = O
Ty—>o0 Tn—>oo Ty—oo =3t n ° o

(as follows again from the lemma and from (2) with k= 2),

Repeating this argument we should finally have:
(4) lim ... lim cos2=nhf(T,,...,T,)=0.

T,—>00 Tﬂ—»oo

If we furthermore suppose that
Tn

Ty
1**=T_1_T_f o [ sin2abf (s ty) dty .. d,
T
0 0

tends to zero if @ runs through F, then we should find in a similar way:

(5) lim ... lim sin2=%f(T,,...,T,)=0.

T—0 Tn—>oo
Both relations (4) and (5) however cannot be satisfied simultaneously.
So our assumption is false, and we see that I does not tend to zero if @
runs through F.

§ 3. Proof of Theorem III.

Put P=T,T,... T, Without loss of generality we assume ¢ > 0.
From (3) it follows, that, for an arbitrary small ¢ > 0 and ¢, > T, = T',(¢),
we have

1
(6) Pt o <
" Aty
uniformly in (¢, ..., t,—;)-
For T, > T, the expression
T

n

f f ettt gt .. dt,

o

can be written as

*
n Tn

™ Pf f+ﬁj;£

It is easily seen that the first term on the right of (7) tends to zero if @
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runs through F. The second term on the right of (7) equals

2 T, AT,
1 e2rihu dy
2 f [ f (O ,t,.)] B =
(1] 0 AT,
% T, , AT,
1 " 1
0 0 f(T *)
T, T’n.—l /(Tn)
1 .
rya f f I: f {F (u)}r e*itu du] dt, ... dt,_,,
0 0 I(Tn‘)

where we put, for the sake of brevity,
I(Tn) - f(tls L) n—l! n)
f(T;L) = f(tli seiay 'Il—-l! n):

and where t, = F(u, t, ...,t,,) is the inverse function of u = f(4,, .. ., t,).
This inverse function exists on account of our assumption ¢ > 0.
The first term on the right of (8) is in absolute value less than

|f(Tn)|+|f(Tn)|

F(Tw)— 1 (Tw)
(9) E‘T T < ¢ :
From
KT o TRIF(TW] e
le;gloo T,l,—_ﬂ _T]:j‘:l.oo 1 P _1 P’

(9), and the assumption 0 << p < 1, it follows, that the first term on
the right of (8) tends to zero if @ runs through F.
Furthermore we have:

T,
f {F(u) }p e2mihu Jo,

%)

{ F(u) }p e2 wihu :lu= T,
2nih u=HTp*

HT,) ) . o i
T? e27iki(T,) TP e2nin/(T,

f i { P(u)Pp—1 F'(u) du= " — — 7 2k

2mnth
HT *) "
n

___b
2nih

Ty

—L.fez"“"" - 1dt,= K,+ K, + K;, say.

2nih
T L]
n

Now we have, replacing the form [ ] in the second term on the right
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f (8) by K, + K,+ K, successively

1 T n—1 1
— K dt,..dt, | < ——,
Pof Of 175 " T 2z |h|eTE?
7, Th—
LJ‘ fK dt. ... dt T—p
cP 1 0er Olay 27r|h|cT ’
0 0
T, Tn—l .
1 ™-_1,%
—?f stdtl ---dtn—l m 5
V] 0

and from these inequalities it follows that also the second term on the
right of (8) tends to zero if @ runs through F.
This completes the proof.

§ 4. Ezamples.
a) The functions

fO=1g(1+t+ ...+ ),

f)=3 1g 1+ ),

f(t)=1g (ag+ i o, tfk) with ay> 0 and a;, 8,>0 (k=1,...,n),
k=1

are not C-uniformly distributed (mod 1) in the intervals
(10) 0<t,<T,T,— oo k=1, ...,n),

as follows from Theorem 1.
b) The function

/(t): 2 1_p+ zﬂ: Slntk "/" (tp seiny tn—l):

where yp is an arbitrary real measurable function, and where 0 < p <1,
satisfies

lim t”b—fﬁ———-z 1—p > 0, uniformly in (¢ i)

t—»oo Bl,,, P ) y 13 ***y In—1/>

so that f(¢) is C-uniformly distributed (mod 1) in the intervals (10), as
follows from Theorem III.

Bandung, 1 April 1950. University of Indonesia.
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