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Synopsis. This paper is a eontinuation of two previous papers with 
the same title whieh will be referred to as PI and PIl (Kon. Ned. Akad. 
v. Wet., Proeeedings Vol. 53, Nos 3 and 4, 1950). In the last seetion of 
PIl we saw that the points n are not appropriate to de fine "projeetive 
norm al spaees". In this paper we use the results of PI and PIl to find 
a set of ("privileged") points whieh (together with x) may be used for 
the definition of projeetive normal spaees. These spaees are defined in 
the last seetion of this paper. 

§ 1. I ntroductory no ti ons . 

Lemma (1, 1). The normal points (cf. § 4 in PI) satisfy tke condition 

(1, 1) r=2, ... ,N. 

{
a, a,_l a1 } as ... al 

Proof. The symbols Pa'r ... a'. Pa'._l".a" and Pa'r".a,.".a" whieh 

appear in (1, 7) PI are obviously symmetrie in their subseripts. If we 

replaee in these symbols the derivatives Pa' q".".::,. by r a,.".!: (whieh are 

symmetrie in their subseripts) and the P!, by t5! we obtain the symbols 

{ 
b. b._1".b'} b.".b, 

rar".a. t5a._1".a, and Yar".a." .a" symmetrie in their subseripts. Conse-

quently the normal points defined by (4,2) PI satisfy (1, 1). 
Another lemma to be used later on deals with the tensor Q! = y" r!" 

(ef. Theorem (3,4) in PI). 

Lemma (1,2). If N> 2 tken 

(1,2a) 

and consequently if 

(1, 3) 

tken 

(1,4a) 

(1, 4b) 

"K d "K d 2 D Qd Y (cbal = Y cba - -~- (b al 

Q= eonst. 

eK d "K d Y ("bal = Y cba 

y" D(.,D.bal = y" D.,D.ba 
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Proof. We have 

(1,5) c r d rd -y ()c ob = ab' 
c rd ra Qd -y ()o bc= ba-()o b' 

On the other hand if N > 2, then K c~ may he thought of as defined hy 

(2,3) PIl and this equation together with (1,5) leads at on ce to (1, 2a), 
from whieh (1, 4a) follows hy virtue of (1, 3). Using the equation (2, 2b) 
in PIl, we see that 

(1, 6) 

(1, 7) 

CD c cK d y cllba = Y n cba + Y cba xd 

The equation (1, 4b) follows from (1, 6), (1, 7), (1, 1) and (1, 4a). 
In the following definition we use the projeetive tensors K's (cf. § 1 

in PIl): 

Definition (1, 1). A ~m will be referred to as symmetrie if the following 
conditions hoU: 

I) The tensor Q: satisfies the relation 

(1, Sa) 

where Q =I=- -1 is a constant. 
11) Among the tensors K's there is at least one, say K""+l"":" such that 

(1, Sb) 

111) 1f N> 3 then 1) 

(1, 9) 

l

a) yOr D n - yOr D n 2) 
4r 4r-1 ,· ·al - (ar a,_1···a1 ) 

b) yOp D D D K c = 
Op (a_I' " a,+1 o, ... a,) 

ya'P D(o'P .. . Da'+l Ka, ... !,) (s= 3, 4, ... , N-l, p=s+ 1, ... , N). 

Throughout this paper we will deal with symmetrie cases only without stating 
it explieitly. 
One of the eonsequenees of (1, Sa) and (l, 9a) is stated in the following 
lemma where we put 

(1,10) er = N + 1-(r-l) (Q+ 1), r= 2, ... ,N. 

Lemma (1,3). 1f N ~ 2, then 

(1, lla) 

1) The condition (1,9a) is satisfied for r= 2 and if N> 2 also for r= 3 (cf. 
the equation (1,4b)). 

2) We impose this condition in order to simplify the finsl results. The device 
used later on (cf. the equations (1.12)) may easily be generalized for the case 
where (1, 9a) does not hold. 



11 N > 3 then 

(1, Ub) 

Moreover it N ;;;::: 4 then 
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ar n - ar n - c n -
Y ar .. . a, - Y (ar" .a,) - r ar-I " .a, 

r--2 (1, Uc) 

- E ya
r 

{ {K(ar ... !: t5!:~ ... !:)} } n b •... b, _ya
r 

K(ar ... !,) X b, r= 4, ... ,N. 

Proof: 

2 

The first equations (1, U) followat onee from (1, 1) and 

n ba = Xba- r ,:. xc = n ba 

Moreover we have by virtue of (1, 8a) 

(1, 12a) 

( ar D _ ar [~ r h r h , Y ar n ar_ l ·· ·a, - y ar n ar_ l ···a, - ar-Iar n har_ 2···a, - ... - a,ar nar_l ... a./I] 

) = [N + 1-(r-l)] nar_I ... a,-Q(r-l) nar--I ... a, = crnar--I ... a,. 

\ r=3, ... ,N 

On the other hand ifwe use (2,2) in PIl, (1, 9a), (1, 1) and (1, 4) we obtain 

Yar [n - D n ] - yar [n - D n ] _ a T,o .a1 ar ar_I,o.Gl - (a r ,o.a1) (ar ar-l"·Gt. 

r-2 (1, 12b) - E ya
r 

{{ K(a
r 
... !: t5!:=~ ... ::)}} n b . ... b, 3) _ya

r 
K(ar .. . !,) Xb r = 3, ... , N. 

2 

The equations (1, Ub, c) followat onee from (1, 12a, b). 

Lemma (1, 4). 11 lor each r = 2, ... , N and q' = 3, ... , N we have 

(1,13) a) cr *" 0, (cf. (1,10)) b) naa, ... a, ya, ... ya'P *" 0, (p= 2, ... ,q') 
B 

then the osculating space P mB 4) is spanned by the points n aB ... a, (s = 1, ... , N; 
x a - na)· 

• Proof. The equations (4,2) in PI show that P m may be thought • of as spanned by the points 

(1, 14) 

On the other hand x is a linear combination of na' (N + 1) X = ya na and 
if (1, 13) hold then by virtue of (1, U) naa_

l 
... a, is a linear combination 

of the points 
(q= 2, ... ,N). 

Renee the spaee spanned by the points (1, 14) is identieal with the 
spaee spanned by naB ... a,. 

,-2 

3) For r=3 one has to put E == O. 
2 

') Cf. § 1 in PI. 
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In the next Lemma we use (1,8b) and put 

H - 1 K "u+1 "u-1 G,. 
"u = K "u+1"'G,. Y .. • y 

80 that we have 

(1, 15) 

Lemma (1,5). Tke equation 

(1, 16) 

admits only one solution H:. I I we put 

l a) Ha~ = 2H (aH~) = H(a~) 
(1, 17) 

b) H C = H eH' - H C a,+1···a, - .(a,+1 a, .. . a,) - (a,+1···a,) (r= 2, ... ,N-l) 

tken we have 

(1, 18) b) a,+1 H C _ H c y a,+1 ... a, - a, ... a,· 

Proof. The projective tensor 15: + ya Hb (homogeneous of degree 0) 
has obviously the rank m + 1. Hence (1, 16) admits only one solution H:. 
On the other hand we obtain from (1,17a), (1,17b) for r= 2, (1,15) 
and (1, 16), 

(1, 19a) ya Ha~ = H~ + Hb H: ya = H: (15: + ya H b) = t5~ 

(1, 19b) 
~ya Hab~=; ya (H~Hb:+ H.:H:'+ H.~Ha:) 

i = ~ (t5~ H b: + H.: 15: + H.~ 15:) = Hb~ 
and these equations prove (1, lSa) as weIl as (1, 18b) for r = 2. The 
remaining equations (1, 18b) may be obtained by usual induction. 

§ 2. Privileged points. 

Delinition (2, 1). An object Q witk tke components Q~~~ .... ~, will be 
termed a privileged object il tke equation 

(2, 1) (s= 1, ... ,q) 

holds and is (x, y, g)-invariant (cl. Delinition (1,2) in PI). 

Theorem (2, la). Let N ;;::: 2. Tken 

(2,2a) 

are privileged points, 

N ab = N(ab) = Dab - CZ1 H:b Xc 

(CZ1 = cz) 

(2,3a) yaNab = yaNba = 0 

homogeneous ol degree N - 1 

(2,4a) N" - (N-ll N ab- gab' . 
Proof. We have from (2, 2a) by virtue of (1, lSa) and (1, Ha) 

ya N ab = ya N(ab) = (cz - C11) xb 
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and consequently if we put C21 = C2 we have (2, 3a). This equation is 

obviously (x,y)-invariant. Because Ha: is homogeneous of degree - 1, 
x. homogeneous of degree N and nab homogeneous of degree N - 1, 
we obtain (2, 4a). Hence (2, 3a) is also g-invariant. 

Theorem (2, lb). Let N > 3. Then (2,2a) and 

(2,2b) 

are privileged points 

(2,3b) 8 = 1,2,3 

and the points (2,2b) are homogeneou8 ot degree N - 2 

(2 4b) N• (N-O) N , .ba = g - cba' 

Proof. Let N > 3 and consider the equation 

(2,5a) NCba=ncba-Qc'!:,Nde-Qc~Xà 
where the Q's are to be found. Using (1, Ub) and (2,2a) we obtain 

1 
c N c K à c [Q à. N Q à ] Y cba=c3 n ba -y (eba)Xd-Y cba d.+ cbaXd 

(2, 5b) à. c à. à e à c Q d 
= (C3 15(/,a) - Y Q Cba) Nd• + [C3 C2l H ba - Y K(Cba) - Y cba] Xd' 

Because 
eH à eH d H d 

Y eba = Y (cbal = ba 
the tensor 

(2,6a) 

reduces the last member on the right hand side to zero. On the other 
hand we have by virtue of (2, 3a) 

3y· H(e: 15~) Nà.= yC 
(He: 15~ + H b: 15~ + Ha~ 15:) Nd• 

= (15:': + 15::) Nàe = 215('!:,) Nd •• 

Hence the tensor 

(2,6b) Q d. _ 3 c3 d e Q àe 
cba = 2 H(eb 15a) = (eba) 

reduces the first member on the right hand side of (2, 5b) to zero so that 
we have y e N cba = O. This equation together with N cba = N(cba) (which 
we obtain from (2, 5a) and (2, 6)) leads to (2, 3b). The remaining part 
of the theorem is very easily proved. 

Note. If N> 3 then 

dB • H' Y dcba = cba 

and by virtue of (1, 8a) and (1, 9b) (used for the first time) for 8 = 3, P = 4 

(2, 7) yd D(d Kc':') = yd Dd Kcc':'l = - 2 (Q + 1) Kce':') . 



(3,2) 
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Hence Qc~ as defined by (2,6a) satisfies the relation 

(2, Sa) 

where 

(2, Sb) 

Q • d P • 
cbIJ = Y dcbIJ 

PdC~=P(dC~) = C3C21HdC~+ 2(Q~ 1) D(dKc~)· 
In the next section we shall generalize this equation in order to be able 
to generalize the results of Theorems (2, 1). 

§ 3. Auxiliary Lemma. 
In the following lemma we use the abbreviations 

a) 

(3, 1) b) 

c) 

(u= 2, ... ,N; s= 2, ... ,u-I) 
and 

(3, Id) j 
_ rc~ 6) 

C~r-l ="2 ' 
r=2, .. . ,N 

c~ = c~ k" 

r=3, ... ,N 

where ka = 1 and k~ for r > 3 is the number taken from the equation 
(r= 4, ... N) 

(
k a~ H br-2·· ·b, _ H br-2".b') t = 0 

~ Y a,.ar-laT-2".a, ar-lar-2"'a, (br-2 ,,· b,) 

which holds for any privileged tensor t(br-2" .b,) whatsoever. Moreover, 
if A:::a 

•.. and B: ::a". are two tensors which satisfy the equation 

(3, Ie) (A:::a". _ B:::a
". ) t".a". = 0 

for any privileged tensor t.. .a". whatsoever, then we write 

(3, 11) A:::a" . '" B:::a" .• 

Lemma (3, 1). 11 N > 4 and il a set ol tensors Q satislies the lollowing 
conditions 

a) 

c) 

6) H au".!: is defined hy (1, 17). 

e) For c~ cf. (1, 10). 

u=2, ... ,N 

v= 3, ... ,N 6) 

w=4, ... N 
s= 1,2, ... , w- 3 
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then the equation 

(
3 3) aw P e •. .. e, C!:t. Q e •... e, 

, Y aw ... a • ... a, - aw_l ... a •... a, w= 4, ... ,N; s= 1, ... ,w-3 

• • e •... cl C""CI 

adm'/,ts a solutwn P aw ... a •... a, = p(aw ... a • .. . a,) homogeneous ol degree s - w, 
which is a lunction ol the R's, K's as weU as ol the derivatives up to 

D D k e (q = 3 ... w - 1) 7) and consequently Q e •. .. e, sa.tislies 
alO". "q+l GO' ••• al " GlO· ··a • .• • G, 

the equation 

(3,2d) 
s= 1,2, ... w-3. 

Proof. We see from Theorems (2,1) that the conditions (3,2a,b) for 
u = 2, 3, v = 3 are satisfied 7a) while (3, 2c) reduces for w = 4 to I 

(3. 4a) "Q" Q" "[K e+ k iiR"] Y "eba = c4 eba - Y (deba) C21 ·deba ii 

The equation (3, 3) (for w = 4) is equivalent to (2, Sa), where P is given 
by (2,8b) so that we have 

(3. 5) Qde':' = c4 [Ca cn R de':' + 2 (Q 1+ 1) D(" Kc':'] - (K(de':') + Cu k"e~ R i~) 
which proves our lemma for w = 4 (and s = 1 = w - 3). For the case 

w = 5 ~ N we have to consider Q!::::!:, s = 1, 2. The tensor Qa •... ~~ 
which appears in (3,2c) for w = 5, s = 2 is given by (3,2b) for v = 4. 
Because of (2, 7) and (1, 9b) we have 

(3.6a) 

(3. 6b) 

and 

(3. 6c) 

Consequently 

(3.7a) 

where 

(3. 7b) 

l
a, D k b"b, 3 a, D K b" ~b, Y a, a,,,,,,,a, = Y a, (a,,,,,,, Ua,) = 

1 ~ a, D K b" {)b, ~ a, D k b"b, 
"" 4" Y (a, a,,,,,,, a,) = T Y (a, a,,,,,,,a,) 

and these two equations prove our lemma for w = 5 < N and s = 2. In 

7) lts construction will he given in the proof. 
7a) cf. the equations (2,5) and (2,6). 
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order to complete the proof for w = 5 and 8 = 1, we use the relationships 
deduced from (1, Sa) and (1, 9b) 

ya. D(a. Da, Ka.a,.!'l = ya. Da. D(a, Ka,.a,.!:l = - 3 (1 + Q) D(a, Ka,.a,.!:l 

ya,. D(a,. Ka,a,.a,.!:l = ya. Da. K(a,a,.a,.!,l = - 3 (1 + Q) K(a,a,a,.!:l 

so that we have by virtue of (3, 5) and (3, 6) 

(3, Sa) 

where 

(3, 8b) 

P c, = P c, ~ C [c C H Cl - 1 D D K t, ] a •. .. a, (a •... all - 4 3 21 a •... a, 2.3 (1 + Q)2 (a. a, a,.a,.a,l 

+ [ 1 D K bi -I- 5 C21 D k b,b, H b'] 
3 (Q + 1) (a. a •... all I 8 (1 + Q) (a. a,a,.a,.a,l c,bl 

and consequently 

(3, Sc) 

The equations (3,8) prove the lemma for w = 5 < N, 8 = 1. Let us now 
suppose that we already proved the lemma for all x = 4, 5, ... , w' < N. 
Then we have in particular 

w'-2 
e""Cl C,,, ,Cl [ C" " C1 '- bq ... bl C,;".Cl] 

(3,9) Qawl ... a •. .. a, '" CWI Pawl ... a •... a, - kawl ... a •. .. a, + ~ kawl ... aq ... a, Qbq ... b •... bl 
.+1 

8= 1, ... ,w'-3 

where P c •... c, = P c • ... c, is a function of the H's and K's as weIl 
aw, ... a,,,.a1 (aw,···a" .. al) 

b 
as of the derivatives up to Dawl'" Daq+l kaq ... a:, (q = 3, ... , w'-I) and 

(3, 10) 

Using now the conditions (1, 8a) and (1, 9b) we prove by the same argument 
as before that 

(3, 11) 8=1, ... ,w'-3 

c •... c, c •... c, • . 'd k' 
where PaWI+1 ... a •... a, = P(awl+1 ... a •... a,1 IS a functlOn of the H s an s as 

weIl as of the derivatives up to Da I Da ka a (q = 3, ... w'). w +1'" q+1 q"" 
Hence we have from (3, 10) and (3, 11) the equation 

(3, 12) 
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for s = 1, ... , w' - 3. The equation (3, 12) for s = w' - 2 may be 
obtained by a similar argument based on (3, 2b) for v = w'. The induction 
based on these results proves our Lemma but for the statement of the 
homogeneity of the P's. In order to prove this statement we observe 

bu_I· ··bl bu_Q·· ·b l 

first from (3, 2a, b) that QaU"u_I ... al resp. Qau .. . au_; ... al is homogeneous of 
degree - 1 resp. - 2. Hence from (3,2c) for s = w - 3 we see that 

bW-S··· bl 
Qa w ... aw_s ... a, must be homogeneous of degree - 3. Consequently, from 

the same equation for w = x-I we obtain by the same argument that 

Qax .. !:::: :!: is homogeneous of degree - 4. Proceeding in the same 

way we arrive at the conclusion that Qa
w 

... !;:::!: is homogeneous of 
b •. . . bl • 

degree s-w, (w= 4, ... ,N; s= 1, ... w-3). Hence Paw ... a •.. . al WhlCh 

satisfies (3, 3) must be by virtue of (3, 2d) and (3, 3) homogeneous of 
degree s- w. 

§ 4. Privileged points. Continuation. 

Lemma (3, 1) enables us to prove the following 

Theorem (4, 1). Let N > 4 and let the tensors Q be defined by (3, 2a,b,c,d). 
Then the points 

(4, la) 

I 

r-I 
b •. .. b, 

N -N =n - s N 0, .• - ,o,.o,~- 0, .. 0,. ~ Qo, . o, 0, ••..• " 

(r- 2, ... ,N, Na - Xa) 

are privileged points 

(4, lb) p= 1, . .. ,r 

homogeneous of degree N + 1- r 

(4, Ic) 

The proof may be accomplished in four steps: 
a) Theorems (2, 1) are particular cases of our theorem for r = 2 

resp. r = 3 8 ). Let us assume that we proved our Theorem for all 
x = 4, ... , r' - I, r' < N. 

b • .. . b, 
b) Denote by Qarl .. . a •... a, a set of unknown tensors and consider the 

points 

(4,2) 

8) For r= 2 the equations (3,2, b, c, d) do not exist. For r= 3 the equations 
(3, 2c, d) do not exist (cf. the equation (2, Sa)). 
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Using Lemma (1,3) and the equations (4, la) (where instead of r we 
put x = 2, 3, ... , r' - 1) we obtain from (4,2) 

(4,3a) 

On the other hand we have aeeording to (3, la), (1, 18b) and by virtue 
of (4,lb) (for r' - 1 instead of r) 

and moreover aeeording to (3,2a) for u = r' - 1 9) 

Henee ifwe impose on Qa" .. . !::::!: (8= 1, ... , r' -1) the eonditions (3, 2a,b,c) 

for u = v = w = r' then we obtain 

(4,3b) 

Moreover from (3, 2a, b, c) for u = v = w = r' we obtain (3,2d). Henee 
b ... . b, 

all tensors Qa,' .. . a .... a, are symmetrie in their subseripts so that we have 
aeeording to (4, 2) 

This equation together with (4,3b) leads to 

(4,3c) p= 1, ... ,r'. 

On the other hand the Qar, .. . !::::!: (8 = 1, . . . , r'-I) defined by (3,2a,b,c,d) 

are homogeneous of degree 8 - r'. Henee Na" ... a, are homogeneous of 
degree N + 1- r'. 

8) According to our assumption in the section a) of the proof, the equation 
(3,2a), resp. (3,2b), resp. (!l,2c,d) exist for u=2,oo.,r'-I, resp. v=3,oo.,r'-I, 
resp. w=4,oo.,r'-1. 
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c) Starting with Theorems (2, 1) and applying the same arguments 
as in b), we easily prove the statements of our theorems for all x = 4, ... 
. . . r' - 1. Hence the assumption of section a) is fulfilled. 

d) The usual induction based on the assumption of the section a) 
and on the results of section b) proves our theorem for r = 2, ... , N. 

§ 5. Projective normal spaces. 

Definition (5, 1). The spaèe spanned by the points x, Nar .. . a, will be 
r-1 

denoted by Nnr-1 and referred to as the (r - I)st projective normal space of 

our ~m, (r= 2, ... , N). 
r-1 

Theorem (5, 1). The normal space Nnr-1 kas the following properties 

a) ft is (x, y, g)-invariant. 
r B 

b) It is contained in the osculating space P m and intersects Pm (s < r) r , 

only in x. 

c) If 

(5, 1) a) c2 ca ... cr =f=. 0, b) naq- .. a, ya, ... yUp =f=. 0, 

q= 3, ... ,r; p= 2, ... ,r 
then its dimension is 

(5,2) n r - 1 = m r - m r - 1 • 

r-1 

Pro of. Because the points x, Nar ... a, are (x, y)-invariant, Nnr-1 IS 

obviously (x, y) - invariant. Because x, Nar ... a, are homogeneous (of 

degree N + 1 resp. N + 1 - r) the space spanned by them must be 
g-invariant. 

On the other hand using (4, la) as weIl as the equations (4,2) in PI 
we see that Nar ... a , may be expressed in the following way 

(5,3) 

r r-l r 

Hence all points Nar ... '" are in P mr and consequently Nnr-1 C P mr' 
r-1 q 

Moreover if some point P =f=. x of N n is in P m (q < r) then according 
r-1 q 

to (5, 3) it must be a linear combination of points yar ... yaq+1 Na, ... a,. 

Because Na, ... a, = N1ar ... a,) are privileged points, we have 

Ya, ... yaq+ 1 N =0 
ar· · ·al 

r-1 !l 

and consequently there is no point P =f=. x of N n in P m (q < r). Consider 
r-1 q 

now the equations 

(5,4) 

~ a) 

( b) 

54 
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r-I r-l 
(equivalent with (4, la)) and denote by P;":'-I C Pmr-l the space spanned 

r-1 

by the points x, Mar .. a,. Suppose m:'-I < mr-l" Since Nnr-l intersects 
q 

P mq (q < r) only in x, the space spanned by the points nar ... a" which 
r 

satisfy (5,4a), can not be P m for m:'-I < mr-I and this together with 
r 

(5, I) contradiets Lemma (I, 4). Because we can not have m:'-I > mr-l 

and the assumption m:'-I < mr-I is a contradictory one, we must have 

m;-I = mr- I, so that the space spanned by the points x, Mar ... a, is the 
r-1 

osculating space P m . Hence we see from (5, 4a) and from the statement r-I 
b) that (5,2) holds. 

N ote: The points N(ar ... a,) (r = 2, ... , N) which (together with x) 
r-I 

span the normal space N n are linearly dependent even in the maximal r-I 
case (cf. equation (4, Ib)): 

Theorem (5, 2). In the maximal case the points N(ar ... a,) are linearly 

"interdependent", e.g. any ot their linear combination which is equal to zero 
must be built up as a linear combination ot yap Nar ... a, (p = I, ... , r). 

Proof. Introduce a special parameter system for which ya = 15: at P. 
Then (5, 3) reduces to 

r-I 
(5,5) N + E n b •... b, 

=x s~.! X (U,,,.U1) (ar· .. a l ) (a, ... a
3 

. • . a 1 ) b, .. . bl 
at P 

1 

(Ul>""Ur = I, ... ,m) 

while the remaining equations (5,3) reduce to identity 0 = O. In order 
to prove our theorem, it is sufficient to prove that N(ar ... a,) are linearly 

r 

independent: The points x(a, ... a,) span P mr while the points 
B 

x(aro 0 . . . 0 aB_I . .. a,) span P mB Hence in the maximal case [where the points 

x(ar ... a,) are linearly independent] the points x(a, ... a,) are linearly independent 
, 

and span (together with x) a nr-I-dimensional space 10) Mn'_1 C P mr 
,-1 

not contained in P mr-I' Consequently by virtue of (5, 5) the points N(ar .. . a,) 

are linearly independent. 

N ote. Suppose m = 1. Because ya Xa = (N + I) x, the points xo, Xl 

1 

are on the tangentialline (the first osculating spa ce PI) of I.l3l at x. Intro-
duce a parameter system ya for which ya = ög at x. Then we have in 
this parameter system 

10) _ (m+r-l) _ (m+r) _ (m+r-l) _ _ nr-I - r - r r-l - m r mr-I' 
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1 
Hence the set of points NOb reduces here to Nu and the space NI spanned 
by x, Nob is the line which joins the points x and Nu (the first projective 

1 

normal). Because NI is y-invariant it does not depend on the choice of 
parameters. Hence if we chose again an arbitrary parameter system, 

1 
we obtain the same straight line NI which contains the points x, Nob. 

r-l 

It may be easily proved by the same argument that the space Nnr-l is 

a straight line (the (r - l)st projective normal) which contains the points 
x, Nor ... o, (r = 2, ... N). 

Bloomington (Indiana), U.S.A. 
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