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PROJECTIVE GEOMETRIZATION OF A SYSTEM OF PARTIAL
DIFFERENTIAL EQUATIONS, III: PROJECTIVE
NORMAL SPACES

BY
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(Communicated by Prof. J. A. ScCHOUTEN at the meeting of March 25, 1950)

Synopsis. This paper is a continuation of two previous papers with
the same title which will be referred to as PI and PII (Kon. Ned. Akad.
v. Wet., Proceedings Vol. 53, Nos 3 and 4, 1950). In the last section of
PII we saw that the points n are not appropriate to define ‘‘projective
normal spaces”. In this paper we use the results of PI and PII to find
a set of (“privileged”’) points which (together with x) may be used for
the definition of projective normal spaces. These spaces are defined in
the last section of this paper.

§ 1. Introductory motions.
Lemma (1,1). The normal points (cf. § 4 in PI) satisfy the condition

(1’ 1) na,...a,_z n(a,...a,)’ r= 2;---3N-

ag ...ay

Proof. The symbols (zyumﬁsp“—l Y }and P, . ., which

a’g—y.--8"
appear in (1, 7) PI are obviously symmetric in their subscripts. If we
replace in these symbols the derivatives Pa,q,_;’fu by I’au_“:: (which are

symmetric in their subscripts) and the P’ by 4° we obtain the symbols

b by . .
{Fa,...a: 6,,"_1_“‘,‘} and ?’a,...::...:n symmetric in their subscripts. Conse-

quently the normal points defined by (4, 2) PI satisfy (1, 1).
Another lemma to be used later on deals with the tensor QZ: y°I"Zc
(cf. Theorem (3, 4) in PI).

bg_qeby

Lemma (1,2). If N> 2 then

(1, 2a) ?/c K(cb:)=?/c Kmf—% D(sz)
and consequently if

(1, 3) Q:=Q¢, Q= const.
then

(1:4a) yc K(cbz)= yc ch:

(1, 4b) y° Dy = yc Dn,,
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Proof. We have
(1’5) __yc bcra:=ra:’ _yc aa*r'l)‘:z111:1_341le2'

On the other hand if N > 2, then K ¢ may be thought of as defined by

(2, 3) PII and this equation together with (1, 5) leads at once to (1, 2a),
from which (1, 4a) follows by virtue of (1, 3). Using the equation (2, 2b)
in PII, we see that

(1, 6) Y Doye= 9" e+ ¥° K o X4
(1, 7) ?/c Dy, = ?/c D) + ?/c K(cbﬁ) X4

The equation (1, 4b) follows from (1, 6), (1,7), (1, 1) and (1, 4a).
In the following definition we use the projective tensors K’s (cf. § 1
in PII):

Definition (1,1). A B,, will be referred to as symmetric if the following
conditions hold:

I) The tensor Q) satisfies the relation
(1, 8a) =95,

where Q £ —1 s a constant.
IT) Among the tensors K’s there is at least one, say K, H_“:, such that

(1, 8b) K=K, 2y .y #0.

III) If N> 3 then?)

a’) ya, -Da,. na,._l...a, = ya, -D(ar na,._l...a,) 2) (1‘= 4,..., N: X,= na)

a ¢ _
(17 9) b) ?/ Dap D(ap_l.‘.DaH_l Ka,...a,) -
Y? D). Do, Ka,.a (s=3,4,..., N—1, p=s+1,..., N).

Throughout this paper we will deal with symmetric cases only without stating
it explicitly.

One of the consequences of (1, 8a) and (1, 9a) is stated in the following
lemma where we put

(1, 10) e, =N+1—(r—1)(Q+1), r=2,..,N.

Lemma (1,3). If N = 2, then
(1, 11a) YP D= Y’ Dy = 3 X,

1) The condition (1,9a) is satisfied for r=-2 and if N > 2 also for r=3 (cf.
the equation (1, 4d)).

?) We impose this condition in order to simplify the final results. The device
used later on (cf. the equations (1.12)) may easily be generalized for the case
where (1, 9a) does not hold.
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If N =3 then
a
(1, 118) Y° v = Y° Dgpa) = €3 Mpg—Y° K gpa) Xz
Moreover if N = 4 then
ya, N,.0= ya,. D, .0)=CrNg, . a0 —
(l, 110) r—2
by sy b

— E y'r { { K, . 0,0, ,.a } } nb_,...b,_’yar K(a,....:.) X, r=4,...,N.
2

Proof: The first equations (1, 11) follow at once from (1,1) and
Ny, = Xba—sz Xo= 1,

Moreover we have by virtue of (1, 8a)

< Y "Dy g 0 =Y"[% 0, .0—Ta o e, y.0—— Do D an]
(1,12a) =N +1—(r—DIng_, 0—Q—1)D; , o=0D0, o
e r=3,...,N
On the other hand if we use (2, 2) in P11, (1,9a), (1,1) and (1, 4) we obtain
Yr(ng, o—D,m, _ o]=Y"r[0g, oy—Dq, Mo, 0] =
128 - Z ¥ (,,r :, Z::i Zi) ” Dy, .6 ) —yr K(a,...Z) x, r=3,...,N.

The equations (1, 11, ¢) follow at once from (1, 12a, b).

Lemma (1,4). If for each r=2,...,N and ¢ =3, ..., N we have
(1,13) @) ¢, #0, (cf. (1,10)) &) n,, . y*.y%#0, (p=2,...9)

then the osculating space I‘;’ma %) is spanned by the points n, 4 (s=1, ..., N;
X, = n,).

Proof. The equations (4, 2) in PI show that Igms may be thought
of as spanned by the points

(1’ 14) x’ xa = na Ittty naa_l...a, ’ na,...a, *

On the other hand x is a linear combination of n,, (N + 1) x= y°n, and
if (1, 13) hold then by virtue of (1, 11) n, .. is a linear combination
of the points

n, (g= 2,...,N).

naq...a,’ naq_z...a,’ ey

Hence the space spanned by the points (1, 14) is identical with the
space spanned by n, . :
3) For r=3 one has to put )s = 0.
2
49 Cf. §1 in PI.
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In the next Lemma we use (1, 86) and put

1 %+l ay_y &
H“u= E Kau+1"'a'1 Y Y

so that we have

(1, 15) y* H,= 1.
Lemma (1, 5). The equation
(1,16) H (6, +y" H) =4,

admits only one solution H,. If we put
a) Ha;E 2H(aH;)=H(a§)
b) H - H Ha,...:,) = H(a,_,_l...:l) (r=2,...,N—1)

[ PN =

(1,17) c
e8pqq

then we have
(1’ 18) a) ya Haz= 6: b) yaH-l H o == Ha,...:,'

[ TN

Proof. The projective tensor d; -+ y* H, (homogeneous of degree 0)
has obviously the rank m -+ 1. Hence (1, 16) admits only one solution H,.
On the other hand we obtain from (1, 17a), (1, 17b) for r= 2, (1, 15)
and (1, 16),

(1,19a)  y*Hy=Hy+ H,H.y' = H, (6, +y" H) =6,
(1. 105} Y Hupe= 1y (HoHye+ Hy H o+ HHy)
=} (& Hyo+ Hy 00+ H.: 6) = Hy,

and these equations prove (1, 18a) as well as (1, 18b) for r= 2. The
remaining equations (1, 18b) may be obtained by usual induction.

§ 2. Privileged points.
Definition (2,1). An object 2 with the components .Q;,':’_'j;‘ will be
termed a privileged object if the equation

(2,1) ¥y 2l =0  (s=1,...,9)
holds and is (z,y, g)-tnvariant (cf. Definition (1, 2) in PI).
Theorem (2, 1a). Let N = 2. Then

[
Ny = Ny = Dy — €3 Hyp X,

(2, 2a)

(ca1=¢y)
are privileged points,
(2, 3a) y° No=1y" Nba =0
homogeneous of degree N — 1
(2: 4“) N.'ab = g(N_l) Nab'

Proof. We have from (2, 2a¢) by virtue of (1, 18a) and (1, llti)
Y*Nop = 4" Niapy = (€2 — €a1) Xp
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and consequently if we put ¢,; =c, we have (2, 3a). This equation is

obviously (z,y)-invariant. Because H,; is homogeneous of degree — 1,
x, homogeneous of degree N and n,, homogeneous of degree N — 1,
we obtain (2, 4a). Hence (2, 3a) is also g-invariant.

Theorem (2, 1b). Let N = 3. Then (2, 2a) and

e b e e
N ot = Nictay = Dpe — €32 Hyo 9a) Noy— (€21 €3 H cva) — K (cbw) Xe

(2, 2b)

a2 = %
are privileged points
(2, 3b) " Nais = 8=1,2,3
and the points (2, 2b) are homogeneous of degree N — 2
(2, 4b) Nopa= g2 Ny,

Proof. Let N = 3 and consider the equation

(2’ 5a) Ncba= Doy — ch;; Nde - chz Xq
where the @’s are to be found. Using (1, 11b) and (2, 2a) we obtain

?/c Nopa=c3n5— yc K(cb:) Xy — ?/c [Qc:; Nde + chﬁ X4]

(2’ 5b) c d ¢ d
= (c3 6(1«:) Yy cha) Nae+[c360 Hyy—Y Koy —Y @ cval Xa-
Because
y* Hug=y" H ooy = Hiy
the tensor
(2, 6a) ch: =30y cha K(cba) Q(cba)

reduces the last member on the right hand side to zero. On the other
hand we have by virtue of (2, 3a)

3?/6 H(c}f 6:) N;.= ?/c (Hc: 6: + Hb'i ‘5: + H.JZ 6;) N,.
= (6db; + 6:;) Nde= 26(‘;:) Nde'
Hence the tensor

3¢ p
(2: 6b) Qc:: = ?3 H(ci 6a) = Q(ctli;;)

reduces the first member on the right hand side of (2, 5b) to zero so that
we have y°N_,,= 0. This equation together with N, = N, (which
we obtain from (2, 5a) and (2, 6)) leads to (2, 3b). The remaining part
of the theorem is very easily proved.
Note. If N> 3 then
yd H dcb: =H cb;
and by virtue of (1, 8a) and (1, 9b) (used for the first time) for s =3, p= 4

(2,7) ' DuKyoy=y" D, Km=—2(@+ 1) Kpa)-
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Hence Q... as defined by (2, 6a) satisfies the relation

(2, 8a) Qera=9" Pua
where

€ e 1 e
(2, 8b) Pige= P(dcb:) = €3 Cgy Hyppq + m—l) D 4K spq) -

In the next section we shall generalize this equation in order to be able
to generalize the results of Theorems (2, 1).

§ 3. Auxiliary Lemma.
In the following lemma we use the abbreviations

o H beb g by ab,_l...b, 5)

Gy...Qg...0; = (ay...ay “ag_5...01)
bg.--br _ by bg—1-b1
(3, l) b) kau+1...a,...a1 = {{ K(a.,H_l...a, 60,__1...a,) }}

by by
6) ka.u_‘_l...alE K(a,u+1...a,)

(vu=2,...,N; s=2,...,u—1)

and
__re° P
(3’ ld) Crr1 = 9 ’ C,—G,k,,
r=2,..,N r=3,...N
where k;=1 and k, for r > 3 is the number taken from the equation
(r = 4, e N)
a, b b b by _
(kr Yy Hu,a,._la::“.a,_Ha,._la::...al t”’r—z"'bl) =0

which holds for any privileged tensor ¢, , ,, whatsoever. Moreover,
if A=* and B~"" are two tensors which satisfy the equation

(3, 1e) (47" =Bt 6=
for any privileged tensor ¢ , whatsoever, then we write
(3, 1) A" = BT
Lemma (3,1). If N = 4 and if a set of tensors Q satisfies the following
conditions
( Cu—1-6 Cy—1-+-C1 .
a) Qa-uau_l...a, = Ouu—1 Haua.u_l...a, =2,..,N
[ .. Cy Cy—0:--C1 Cy—9..-C1
‘ b) Qava,,__la:::...a, =Cp10—2 c!’) Ha,,av_la:___z...a; == ka,av_lazz...a, v=3,..., N 6)
ay, Cg..-Cy [
OB T U gt iy oo

= bge.b ¢g--a] 8) w N
@y CgenC1 b — = &
—Y [kaw...a '"“L_-*._. Eq kaw...aq...a, qu...b‘...bl] ’

* it s=12,...,,w—3

5) H,,u_._f;; is defined by (1, 17).

%) For c, cf. (1, 10).
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then the equation

CgeeC1 Cg--- 01

(3’ 3) y Paw..,a,...a, = Qaw_l...a,...al w= 4:---:N; 8= 17---, w—3

Cg...Cy (4 Cy
admits a solution P, ., t=Pq, a.a homogencous of degree s—w,

which 18 a function of the H s, K’s as well as of the derivatives up to
Dy, Dy, o s (@=3, ..., w—1)7) and consequently Qo - e satisfies
the equation

Cg.eeCy Cg..Cy CgoeeCy
Qaw...a:...al = Cy aw...a:...al - [kaw...a:...al
(3, 2d) = bg.--bs Cgoni
+ E kaw...a:...m Qaq... 5...b,] w= 4’ ceey N: §= 1, 2: eee w_3'
s+1

Proof. We see from Theorems (2,1) that the conditions (3,2a,d) for
u= 2,3, v=3 are satisfied ") while (3, 2c) reduces for w=4 to |

(3. 4a) yd Qdcb; =0 ch; - ?/d [K(dcb;) + ¢y kacb'}i H 1';]

The equation (3, 3) (for w= 4) is equivalent to (2, 8a), where P is given
by (2, 80) so that we have

1
2@+D
which proves our lemma for w=4 (and s= 1= w — 3). For the case
w=5 <N we have to consider Qb’ b:, s=1,2. The tensor @, ,. b‘b‘

which appears in (3, 2¢) for w= 5, s= 2 is given by (3, 2b) for v= 4.
Because of (2, 7) and (1, 95) we have

(3. 5) Qdcb: =0 I:cs Co1 Hdcb; + D, ch;) - (K(dcb:) + ¢ kdczz Hi;)

(3. 6a) 3 Z/a' D, kam,z: =3y" D, . K (a.a.aa 6«;) =
) s ] L s 20y
= llﬁ ya D(a. Ka.a.z, 621) = 2‘ Y D(a. ka.a.ab.a,)

bad,

(3' 6b) 3 yai 'Dﬂl K(a.a,a. 6111) =—3.2 (1 + Q) (ﬂcala: '11) =—2 (1 + Q) kﬂlﬂlaaax
and

a beb bab;
(3' 66) Yy * Ha.a.a,a:a: = é Ha.a.a.a: .
Consequently
baby bsb beb bsbab, Ca¢;
(3' 7a) Qasaaana:ai = c5 Pa.a.a,a:a: - (ka.a.a.a,a: ka.a.a.a:a: Qb:b:b:)
where

baby by ' beby baby
(3' 7b) P As0,03030; — P (a.a.a.a.a,) = 1' [032 64 H A5Q,03050, + 2 (1 + Q) 'D (as ka.a.a,a,)]
and these two equations prove our lemma for w=5 < N and s= 2. In

") Its construction will be given in the proof.
78) cf. the equations (2, 5) and (2, 6).
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order to complete the proof for w = 5 and s = 1, we use the relationships
deduced from (1, 8a) and (1, 9b)

al D(a. D Ka.a.aq) - ya. D D(a. Ka.a..a.) =—3 (1 + Q) D(a. Ka,a.a,)

a, D(a. Ka.a.a.a;) - yal Da. K(a.a.a.al) =—3 (1 + Q) K(a.a.a,a,)
so that we have by virtue of (3, 5) and (3, 6)

(3: Sa) a.a..u,Zi = ya' Pa....z:
where
1 1 1 1
P, a=P, o226 I:Ca ¢ Hyy o — 230F0¢ 5 Dig, Dy, Kot

(3, 8b)
5c¢y

1 by beby
+ [ e it T gy Do b

240334a;)

and consequently

bg-- tz1

(37 80) Qa. ¢cz‘ = Cs I)aS a a. a,+ Z kaw Bg.. a, )

The equations (3, 8) prove the lemma for w=5 < N, s= 1. Let us now
suppose that we already proved the lemma for all z=4, 5, ..., w <N.
Then we have in particular

w/—2
CgeeiCy Cg.i C1 CgiiCy bq...bl Cg...Cy
(3: 9) Qaw:...a‘...a, = cw’ Paw,...as...a, aw,...as...a,+ 2 ka 100.8ge. 0 Qb ...b,...b,
s+1
s=1,...,w'—3

0

where P =P, . --Jh) is a function of the H’s and K’s as well

a ,...a‘... (@7 8 "
h

as of the derivativesup to D, , Dy, kap.ap (§=3, ..., w'—1) and

Gyl 41 CgeeeC Cgeuny
Y Qaw,+1...a,...a1 Cout +1 Qawl...ar..a,
w/—1
(3, 10) Gyl +1 k CgeeiCy k bg---by ‘a“-cl]
—-Y Gyt 4100501 + De CTRN T qu...b,...b.
8+1
8§ = ].,2,...,10'——-2.

Using now the conditions (1, 8a) and (1, 9b) we prove by the same argument
as before that

[

Q!
(3,11) Qu,ara=y" P

Cgqis-C
8 1 7
s=1...,w'—3

Gyt 41:--Gg---01 3. )
€geeC1

CgeuC1 .
= Playr,q..ap.0) is a function of the H’s and k’s as

where Paw,+1...a,...a1 8

well as of the derivatives up to D, , . . D,, ., Ic,,qm,,1 (g=38, ... w').
Hence we have from (3, 10) and (3, 11) the equation

bg...by €gueiCy
Qa a,..0 = = Cypr+1 Pa ag...a
w!+1---%g--0 w! 1 g ,

w/—1
(3! 12) €g...C1 bg...by [PEN)
8 g Q 8
aw,+1...as...al aw,+1...aq...al bq...b,...

8+1
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for s=1,...,w'—3. The equation (3,12) for s=w'—2 may be
obtained by a similar argument based on (3, 2b) for v = w’'. The induction
based on these results proves our Lemma but for the statement of the
homogeneity of the P’s. In order to prove this statement we observe

9

by—1---b1 by—o...by
first from (3,2a,b) that Qauaz_i---ax resp. Qo .a, ,.a 18 homogeneous of
degree — 1 resp. — 2. Hence from (3, 2c) for s=w — 3 we see that

w31
Qaw...:w_:...al must be homogeneous of degree — 3. Consequently, from

the same equation for w =2 — 1 we obtain by the same argument that
bpgeobs | ' '

Qo ., 4:..,,, is homogeneous of degree — 4. Proceeding in the same

bg...by

ag..ay 18 homogeneous of

degree s —w, (w=4,...,N; s=1,... w—3). Hence P, , ., " which
satisfies (3, 3) must be by virtue of (3, 2d) and (3, 3) homogeneous of
degree s — w.

way we arrive at the conclusion that @,

§ 4. Privileged points. Continuation.
Lemma (3, 1) enables us to prove the following

Theorem (4, 1). Let N = 4 and let the tensors Q be defined by (3, 2a,b,c,d).
Then the points

r—1

bg...by
(4, la) Nar---“l= N(a,..“al) =Dy a0 EQaT...a:..a, Nbs...b,’
T 1
(r=2,...,N; N, =x,)

are privileged points
(4, 1b) y? N, .

homogeneous of degree N + 1 —r

(4, lc) Na,...a, = g(N+l—r) Na,...a,'

The proof may be accomplished in four steps:

a) Theorems (2,1) are particular cases of our theorem for =2
resp. r = 3 8). Let us assume that we proved our Theorem for all
r=4,...,r—1,r <N.

b) Denote by @, ___a"mbl

.y

a set of unknown tensors and consider the
points

r’—1

a,r...m: Qpro @y 2 Qa,:...us...al Nb, byt

8) For r=2 the equations (3, 2,b,¢,d) do not exist. For r=3 the equations
(3, 2¢, d) do not exist (cf. the equation (2, 8a)).

(4, 2) N
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Using Lemma (1, 3) and the equations (4, 1a) (where instead of r we
put z=2,3, ..., — 1) we obtain from (4, 2)

L] bpr_q..-b1 Gyr bpr_q...b4
Y Na,.l...al = (cr’ 6(a,.,_1...a,) —Y Qa,.,a,,_l...a,) Nb,.,_l...b,

: bpr_g...by Ayt bpr—g...by bpr_g...by

+ [cf’ Qa,,_la,,_z...a, - ?/ (ka,,...a,,_z...a, + Qa,y...a,,_g...a,)] Nbrl_z...b
(4,3a) f

4,3a CgeenCy apr [ Cg...01

T
4+ DIs | cn Qa,,_l...a‘...a._y Qar:...a,...a,+ka,.,...a,...a,+
1
r/—2

bg.-.by Cg...by
a 8
+ Eq, ka,.,...aa...a; Qba...b,...b,)] Nc,...cl'

s+1

On the other hand we have according to (3, 1a), (1, 18b) and by virtue
of (4,1b) (for ' — 1 instead of r)

bpr_—q...by bpr—y1 bpr—g...b1
[} rl—1 R 7Y r r
Yy Ha,,a,.,_l...a, Nbr:_l...bl_ Y (@p1Gpr_q 611,./_2...411) Nb,.l_l...bl
(4! 4“) 2 b,.l_l...b;
=3 ‘s(a,.,_l...al) Nb,:_l...b.

and moreover according to (3, 2a) for u=1r'—19)

bpr_g...by bpr—g...by

Cri Qar,_la,,_z,..al bpr—geby = Crt Cri—1r1—2 Ha,.,_lu,,_z...a, Nb,.,_z...b,
4, 4b
( ’ ) o g H bpr_g...by N
=CpCrap—2y Gyt Gpr__18p1_9...01 “Vbpr_g...b°

Hence if we impose on Qa,::::i (=1, ...,r"—1)the conditions (3, 2a,b,c)

for u=v= w=1r' then we obtain
(4’ 3b) ?/a" Na,.,...a,= 0.

Moreover from (3, 2a,b,c) for u=v= w=r' we obtain (3, 2d). Hence

byebs

..ay..q, 3T€ Symmetric in their subscripts so that we have

all tensors @, ,
according to (4, 2)

Na,.,...a, = N(a,:...a;)'
This equation together with (4, 3b) leads to
(4, 3c) Y? N, , 0 =0 =L,

bg...by
On the other hand the Q,,',___,,:mal (s=1, ...,r"—1) defined by (3,2a,b,c,d)
are homogeneous of degree s —r'. Hence N,, , are homogeneous of
degree N+ 1 —1r'.
®) According to our assumption in the section a) of the proof, the equation

(3, 2a), resp. (3, 2b), resp. (3, 2c,d) exist for u=2,...,7' —1, resp. v==3,...,7' —1,
resp. w=4,...,r' —1.
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¢) Starting with Theorems (2, 1) and applying the same arguments
as in b), we easily prove the statements of our theorems for all x =4, ...
... r — 1. Hence the assumption of section a) is fulfilled.

d) The usual induction based on the assumption of the section a)
and on the results of section b) proves our theorem for r=2, ..., N.

§ 5. Projective normal spaces.

Definition (5,1). The space spanned by the points X, N, o will be

r—1
denoted by N, . and referred to as the (r — 1)st projective normal space of
our B,,, r=2,...,N).
r—1
Theorem (5, 1). The mormal space N,  has the following properties
a) It is (x,y, g)-invariant.
T 8

b) 1t is contained in the osculating space P, and intersects P, (s <r)
only in X.

c) If
(5, 1) a) cyc3...c, %0, b) ng .4 y" . y" £0,

qg=3,...,r; p=2,...,r
then its dimension is
(57 2) Ny =M, — M, ;.
1

Proof. Because the points x, N, , are (z,y)-invariant, 'ﬁ”r_l is

obviously (x, y)-invariant. Because x, N,,.., are homogeneous (of

1

degree N+ 1 resp. N+ 1—r) the space spanned by them must be
g-invariant.

On the other hand using (4, la) as well as the equations (4, 2) in PI
we see that N,,..., may be expressed in the following way

bg.by

r—1
(5, 3) Na,...a, =X;,..q - Es 'Qa,....as...a, Xp,...b,°
1

r r—1 T
Hence all points N, , are in P, and consequently N, CP,.

—1 q
Moreover if some point P # x of N,  isin P,,,q (g < r) then according

to (5,3) it must be a linear combination of points y"’...y""“Ndrma‘.
Because N, , = N, _,, are privileged points, we have

ya'--- yaq+1 Na,,...lh: 0

1
and consequently there is no point P £ x of W,,f_ in qu (9 < r). Consider

now the equations
a’) na,....ml = Na,‘...al + Ma,....a,

1

(5, 4) = by
b) Mﬂ,----ax = E Qa,...as...al Nb_,...b,’ (Na = xa)
1 %

54
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r—1 r—1
(equivalent with (4, 1a)) and denote by P,’ C P, _ the space spanned
r—1

by the points x, M, . Suppose m, , <m,,. Since N,  intersects

.ap°

f’mq (¢ <r) only in x, the space spanned by the points n, ,, which

satisfy (5, 4a), can not be Ir’mr for m,_, < m,_, and this together with
(5, 1) contradicts Lemma (1, 4). Because we can not have m,_; > m,_,
and the assumption m;, ; < m,_; is a contradictory one, we must have
m,_; = m,_,, so that the space spanned by the points x, M., . is the

osculating space fI_’:,,r_ - Hence we see from (5, 4a) and from the statement
b) that (5, 2) holds.
Note: The points Ny _ 4 (r= 2, ..., N) which (together with x)

r—1
span the normal space N,  are linearly dependent even in the maximal

case (cf. equation (4, 1b)):

Theorem (5,2). In the maximal case the points N(u,...a,) are linearly

“interdependent’, e.g. any of their linear combination which is equal to zero
must be built up as a linear combination of y» N, , (p=1,...,7).

Proof. Introduce a special parameter system for which y*= 6% at P.
Then (5, 3) reduces to

r—1
byeeby
(5: 5) N(a,...a,) = x(u,....a,) + 2 S 'Q(a,.,.a,...al) Xp,...b, at P
1
(ayeesa,=1,...,m)

while the remaining equations (5, 3) reduce to identity 0= 0. In order
to prove our theorem, it is sufficient to prove that N _ ., are linearly

independent: The points x,__,, span If’,,,r while the points

8
X(a,00...0a,_y..ap SPan P, . Hence in the maximal case [where the points
X(a,...ay are linearly independent] the points X, ., are linearly independent

and span (together with x) a n, ,-dimensional space®) M,  C Ir’mr

r—1
not contained in P,, . Consequently by virtue of (5, 5) the points Ny, __q,

are linearly independent.
Note. Suppose m= 1. Because y* x,= (N+ 1)x, the points x,, x,

1
are on the tangential line (the first osculating space P;) of B3, at x. Intro-
duce a parameter system y* for which y*= 2 at x. Then we have in
this parameter system
0=y*N,=N,, at x.
1) = <m+r—1) _ (m—H') . (m+r—1

= Mp—My_q.
r r r—l) £ =1
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1
Hence the set of points N,, reduces here to N;; and the space N, spanned
by x, N, is the line which joins the points x and N;; (the first projective

1
normal). Because N, is y-invariant it does not depend on the choice of
parameters. Hence if we chose again an arbitrary parameter system,

1
we obtain the same straight line N, which contains the points x, N,,.

—1
It may be easily proved by the same argument that the space TJV"r_l is
a straight line (the (r — 1)st projective normal) which contains the points
X, No o r=2,... N).
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