MATHEMATICS

PROJECTIVE GEOMETRIZATION OF A SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS, III: PROJECTIVE
 NORMAL SPACES

BY
V. HLAVATÝ

(Communicated by Prof. J. A. Schouten at the meeting of March 25, 1950)

Synopsis. This paper is a continuation of two previous papers with the same title which will be referred to as $P I$ and $P I I$ (Kon. Ned. Akad. v. Wet., Proceedings Vol. 53, Nos 3 and 4, 1950). In the last section of $P I I$ we saw that the points \mathbf{n} are not appropriate to define "projective normal spaces". In this paper we use the results of PI and PII to find a set of ("privileged") points which (together with \mathbf{x}) may be used for the definition of projective normal spaces. These spaces are defined in the last section of this paper.

§ 1. Introductory notions.

Lemma (1, 1). The normal points (cf. § 4 in PI) satisfy the condition

$$
\begin{equation*}
\mathbf{n}_{a_{r} \ldots a_{1}}=\mathbf{n}_{\left(a_{r} \ldots a_{1}\right)}, \quad r=2, \ldots, N \tag{1,1}
\end{equation*}
$$

 appear in $(1,7) P I$ are obviously symmetric in their subscripts. If we replace in these symbols the derivatives $P_{a^{\prime}{ }_{q} \ldots a^{\prime} u}^{a_{u}}$ by $\Gamma_{a_{u} \ldots a_{q}}{ }^{b_{q}}$ (which are symmetric in their subscripts) and the P_{a}^{b}, by δ_{a}^{b} we obtain the symbols $\left\{\Gamma_{a_{r} \ldots a_{s}}^{b_{s}} \delta_{a_{s-1} \ldots a_{1}}^{b_{s-1} \ldots b_{1}}\right\}$, $\gamma_{a_{r} \ldots a_{s} \ldots a_{1}}$, symmetric in their subscripts. Consequently the normal points defined by (4, 2) PI satisfy (1, 1).

Another lemma to be used later on deals with the tensor $Q_{a}^{b}=y^{c} \Gamma_{a c}^{b}$ (cf. Theorem (3, 4) in PI).

Lemma (1, 2). If $N>2$ then

$$
\begin{equation*}
y^{c} K_{(c b a)}^{d}=y^{c} K_{c b a}^{d}-\frac{2}{3} D_{(b} Q_{a)}^{d} \tag{1,2a}
\end{equation*}
$$

and consequently if

$$
\begin{equation*}
Q_{a}^{d}=Q \delta_{a}^{d}, \quad Q=\text { const. } \tag{1,3}
\end{equation*}
$$

then

$(1,4 a)$	$y^{c} K_{(c b a)}^{d}=y^{c} K_{c b a}^{d}$
$(1,4 b)$	$y^{c} D_{(c} \mathbf{n}_{b a)}=y^{c} D_{c} \mathbf{n}_{b a}$

Proof. We have
$(1,5)$

$$
-y^{c} \partial_{c} \Gamma_{a b}^{d}=\Gamma_{a b}^{d}, \quad-y^{c} \partial_{a} \Gamma_{b c}^{d}=\Gamma_{b a}^{a}-\partial_{a} Q_{b}^{d}
$$

On the other hand if $N>2$, then $K_{c b a}^{d}$ may be thought of as defined by $(2,3) P I I$ and this equation together with $(1,5)$ leads at once to $(1,2 a)$, from which ($1,4 a$) follows by virtue of (1,3). Using the equation ($2,2 b$) in PII, we see that

$$
\begin{equation*}
y^{c} D_{c} \mathbf{n}_{b a}=y^{c} \mathbf{n}_{c b a}+y^{c} K_{c b a}^{d} \mathbf{x}_{d} \tag{1,6}
\end{equation*}
$$

$$
\begin{equation*}
y^{c} D_{(c} \mathbf{n}_{b a)}=y^{c} \mathbf{n}_{(c b a)}+y^{c} K_{(c b a)}^{d} \mathbf{x}_{d} \tag{1,7}
\end{equation*}
$$

The equation ($1,4 b$) follows from (1,6), $(1,7),(1,1)$ and $(1,4 a)$.
In the following definition we use the projective tensors K 's (cf. § 1 in PII):

Definition (1, 1). A $\mathfrak{\Re}_{m}$ will be referred to as symmetric if the following conditions hold:
I) The tensor Q_{a}^{b} satisfies the relation

$$
\begin{equation*}
Q_{a}^{b}=Q \delta_{a}^{b} \tag{1,8a}
\end{equation*}
$$

where $Q \neq-1$ is a constant.
II) Among the tensors K 's there is at least one, say $K_{a_{u+1} \ldots a_{1}}$, such that

$$
\begin{equation*}
K \equiv K_{a_{u+1} \ldots a_{1}} y^{a_{u+1}} \ldots y^{a_{u}} \neq 0 \tag{1,8b}
\end{equation*}
$$

III) If $N>3$ then ${ }^{1}$)

$$
\begin{cases}\text { a) } & \left.y^{a_{r}} D_{a_{r}} \mathbf{n}_{a_{r-1} \ldots a_{1}}=y^{a_{r}} D_{\left(a_{r}\right.} \mathbf{n}_{\left.a_{r-1} \ldots a_{1}\right)}{ }^{2}\right) \quad\left(r=4, \ldots, N, \mathbf{x}_{a}=\mathbf{n}_{a}\right) \tag{1,9}\\ b) & y^{a_{p}} D_{a_{p}} D_{\left(a_{p-1} \ldots\right.} D_{a_{s+1}} K_{\left.a_{g} \ldots a_{1}\right)}^{c}= \\ & y^{a_{p}} D_{\left(a_{p} \ldots\right.} D_{a_{s+1}} K_{\left.a_{s \ldots} \ldots a_{1}\right)}^{c} \quad(s=3,4, \ldots, N-1, p=s+1, \ldots, N)\end{cases}
$$

Throughout this paper we will deal with symmetric cases only without stating it explicitly.
One of the consequences of ($1,8 a$) and ($1,9 a$) is stated in the following lemma where we put

$$
\begin{equation*}
c_{r} \equiv N+1-(r-1)(Q+1), \quad r=2, \ldots, N \tag{1,10}
\end{equation*}
$$

Lemma (1,3). If $N \geqq 2$, then

$$
\begin{equation*}
y^{b} \mathbf{n}_{b a}=y^{b} \mathbf{n}_{(b a)}=c_{2} \mathbf{x}_{a} \tag{1,11a}
\end{equation*}
$$

[^0]
If $N \geqq 3$ then

$$
\begin{equation*}
y^{c} \mathbf{n}_{c b a}=y^{c} \mathbf{n}_{(c b a)}=c_{3} \mathbf{n}_{b a}-y^{c} K_{(c b a)}^{d} \mathbf{x}_{d} . \tag{1,11b}
\end{equation*}
$$

Moreover if $N \geqq 4$ then

Proof: The first equations (1, 11) follow at once from (1,1) and

$$
\mathbf{n}_{b a}=\mathbf{x}_{b a}-\Gamma_{b a}^{c} \mathbf{x}_{c}=\mathbf{n}_{b a}
$$

Moreover we have by virtue of ($1,8 a$)

$$
\left\{\begin{array}{c}
y^{a_{r}} D_{a_{r}} \mathbf{n}_{a_{r-1} \ldots a_{1}}=y^{a_{r}\left[\partial_{a_{r}} \mathbf{n}_{a_{r-1} \ldots a_{1}}-\Gamma_{a_{r-1} a_{r}} \mathbf{n}_{h a_{r-2} \ldots a_{1}}-\ldots-\Gamma_{a_{1} a_{r}}^{h} \mathbf{n}_{a_{r-1} \ldots a_{2} h}\right]} \tag{1,12a}\\
=[N+\mathbf{1}-(r-1)] \mathbf{n}_{a_{r-1} \ldots a_{1}} Q(r-1) \mathbf{n}_{a_{r-1} \ldots a_{1}}=c_{r} \mathbf{n}_{a_{r-1} \ldots a_{1}} \\
r=3, \ldots, N
\end{array}\right.
$$

On the other hand if we use $(2,2)$ in $P I I,(1,9 a),(1,1)$ and $(1,4)$ we obtain

$$
y^{a_{r}}\left[\mathbf{n}_{a_{r} \ldots a_{1}}-D_{a_{r}} \mathbf{n}_{a_{r-1} \ldots a_{1}}\right]=y^{a_{r}}\left[\mathbf{n}_{\left(a_{r} \ldots a_{1}\right)}-D_{\left(a_{r}\right.} \mathbf{n}_{a_{r-1} \ldots a_{1}}\right]=
$$

$$
\begin{equation*}
\left.-\sum_{2}^{r-2} y^{a_{r}}\left\{\left\{K_{\left(a_{r} \ldots a_{8}\right.}^{b_{s}} \delta_{\left.a_{s-1} \ldots a_{1}\right)}^{b_{s}-1} b_{1}^{b_{1}}\right)\right\} \mathbf{n}_{b_{g} \ldots b_{1}}{ }^{3}\right)-y^{a_{r}} K_{\left(a_{r} \ldots a_{1}\right)}^{\stackrel{b}{x_{b}}} \quad r=3, \ldots, N \tag{1,12b}
\end{equation*}
$$

The equations ($1,11 b, c$) follow at once from ($1,12 a, b$).
Lemma (1, 4). If for each $r=2, \ldots, N$ and $q^{\prime}=3, \ldots, N$ we have
a) $\quad c_{r} \neq 0$, (cf. $\left.(1,10)\right)$
b) $\mathbf{n}_{a_{q}, \ldots a_{1}} y^{a_{1}} \ldots y^{a_{p}} \neq 0, \quad\left(p=2, \ldots, q^{\prime}\right)$
then the osculating space $\left.\stackrel{s}{P_{m_{s}}}{ }^{4}\right)$ is spanned by the points $\mathbf{n}_{a_{g} \ldots a_{1}}(s=1, \ldots, N$; $\mathbf{x}_{a} \equiv \mathbf{n a}_{a}$).

Proof. The equations (4, 2) in $P I$ show that $\stackrel{8}{P}_{m_{s}}$ may be thought of as spanned by the points

$$
\begin{equation*}
\mathbf{x}, \mathbf{x}_{a} \equiv \mathbf{n}_{a}, \ldots, \mathbf{n}_{a_{s-1} \ldots a_{1}}, \mathbf{n}_{a_{s} \ldots a_{1}} \tag{1,14}
\end{equation*}
$$

On the other hand \mathbf{x} is a linear combination of $\mathbf{n}_{a},(N+1) \mathbf{x}=y^{a} \mathbf{n}_{a}$ and if $(1,13)$ hold then by virtue of $(1,11) \mathbf{n}_{a_{q-1} \ldots a_{1}}$ is a linear combination of the points

$$
\mathbf{n}_{a_{q} \cdots a_{1}}, \mathbf{n}_{a_{q-2} \cdots a_{1}}, \ldots, \mathbf{n}_{a} \quad(q=2, \ldots, N)
$$

Hence the space spanned by the points $(1,14)$ is identical with the space spanned by $\mathbf{n}_{a_{s} \ldots a_{1}}$.
${ }^{3}$) For $r=3$ one has to put $\sum_{\frac{s}{r-2}}^{r-} \equiv 0$.
$\left.{ }^{4}\right)$ Cf. $\S 1$ in $P I$.

In the next Lemma we use $(1,8 b)$ and put

$$
H_{a_{u}} \equiv \frac{1}{K} K_{a_{u+1} \ldots a_{1}}^{a_{u+1}} y^{a_{u-1}} \ldots y^{a_{1}}
$$

so that we have

$$
\begin{equation*}
y^{a} H_{a}=1 \tag{1,15}
\end{equation*}
$$

Lemma (1,5). The equation

$$
\begin{equation*}
H_{a}^{c}\left(\delta_{b}^{a}+y^{a} H_{b}\right)=\delta_{b}^{c} \tag{1,16}
\end{equation*}
$$

admits only one solution H_{a}^{c}. If we put

$$
\begin{cases}a) & H_{a b}^{c} \equiv 2 H_{(a} H_{b)}^{c}=H_{(a b)}^{c} \tag{1,17}\\ b) \quad H_{a_{r+1} \ldots a_{1}}^{c} \equiv H_{e\left(a_{r+1}\right.}^{c} H_{\left.a_{r} \ldots a_{1}\right)}^{e}=H_{\left(a_{r+1} \cdots a_{1}\right)}^{c} \quad(r=2, \ldots, N-1)\end{cases}
$$

then we have
a) $y^{a} H_{a b}^{c}=\delta_{b}^{c}$
b) $y^{a_{r+1}} H_{a_{r+1} \ldots a_{1}}=H_{a_{r} \ldots a_{1}}$.

Proof. The projective tensor $\delta_{b}^{a}+y^{a} H_{b}$ (homogeneous of degree 0) has obviously the rank $m+1$. Hence $(1,16)$ admits only one solution H_{a}^{c}. On the other hand we obtain from ($1,17 a$), $(1,17 b)$ for $r=2$, $(1,15)$ and (1,16),

$$
\begin{equation*}
y^{a} H_{a b}^{c}=H_{b}^{c}+H_{b} H_{a}^{c} y^{a}=H_{a}^{c}\left(\delta_{b}^{a}+y^{a} H_{b}\right)=\delta_{b}^{c} \tag{1,19a}
\end{equation*}
$$

$$
\left\{\begin{align*}
y^{a} H_{a b c}^{d} & =\frac{1}{3} y^{a}\left(H_{e a}^{d} H_{b c}^{e}+H_{e b}^{d} H_{c a}^{e}+H_{e c}^{d} H_{a b}^{e}\right) \tag{1,19b}\\
& =\frac{1}{3}\left(\delta_{e}^{d} H_{b c}^{e}+H_{e b}^{d} \delta_{c}^{e}+H_{e c}^{d} \delta_{b}^{e}\right)=H_{b c}^{d}
\end{align*}\right.
$$

and these equations prove $(1,18 a)$ as well as $(1,18 b)$ for $r=2$. The remaining equations ($1,18 b$) may be obtained by usual induction.

§ 2. Privileged points.

Definition (2, 1). An object Ω with the components $\Omega_{a_{q} \ldots a_{1}}^{\ldots b . \ldots}$ will be termed a privileged object if the equation

$$
\begin{equation*}
y^{a_{s}} \Omega_{a_{q} \ldots a_{1}}^{\ldots b \ldots}=0 \quad(s=1, \ldots, q) \tag{2,1}
\end{equation*}
$$

holds and is (x, y, g)-invariant (cf. Definition (1, 2) in PI).
Theorem $(2,1 a)$. Let $N \geqq 2$. Then

$$
\begin{equation*}
\frac{\mathbf{N}_{a b}=\mathbf{N}_{(a b)}=\mathbf{n}_{a b}-c_{21} H_{a b}^{c} \mathbf{x}_{c}}{\left(c_{21}=c_{2}\right)} \tag{2,2a}
\end{equation*}
$$

are privileged points,

$$
\begin{equation*}
y^{a} \mathbf{N}_{a b}=y^{a} \mathbf{N}_{b a}=0 \tag{2,3a}
\end{equation*}
$$

homogeneous of degree $N-1$
(2, 4a)

$$
\dot{\mathbf{N}}_{a b}=g^{(N-1)} \mathbf{N}_{a b}
$$

Proof. We have from ($2,2 a$) by virtue of ($1,18 a$) and ($1,11 a$)

$$
y^{a} \mathbf{N}_{a b}=y^{a} \mathbf{N}_{(a b)}=\left(c_{\mathbf{2}}-c_{21}\right) \mathbf{x}_{b}
$$

and consequently if we put $c_{21}=c_{2}$ we have ($2,3 a$). This equation is obviously (x, y)-invariant. Because $H_{a b}^{d}$ is homogeneous of degree -1, \mathbf{x}_{c} homogeneous of degree N and $\mathbf{n}_{a b}$ homogeneous of degree $N-1$, we obtain $(2,4 a)$. Hence $(2,3 a)$ is also g-invariant.

Theorem $(2,1 b)$. Let $N \geqq 3$. Then $(2,2 a)$ and

$$
(2,2 b) \frac{\mathbf{N}_{c b a}=\mathbf{N}_{(c b a)}=\mathbf{n}_{c b a}-c_{32} H_{(b c}^{e} \delta_{a)}^{\prime} \mathbf{N}_{e f}-\left(c_{21} c_{3} H_{(c b a)}^{e}-K_{(c b a)}^{e}\right) \mathbf{x}_{e}}{c_{32}=\frac{3 c_{3}}{2}}
$$

are privileged points

$$
(2,3 b)
$$

$$
y^{a_{s}} \mathbf{N}_{a_{3} a_{2} a_{1}}=0 \quad s=1,2,3
$$

and the points $(2,2 b)$ are homogeneous of degree $N-2$

$$
\begin{equation*}
\dot{\mathbf{N}}_{c b a}=g^{(N-2)} \mathbf{N}_{c b a} . \tag{2,4b}
\end{equation*}
$$

Proof. Let $N \geqq 3$ and consider the equation

$$
\begin{equation*}
\mathbf{N}_{c b a}=\mathbf{n}_{c b a}-Q_{c b a}^{d e} \mathbf{N}_{d e}-Q_{c b a}^{d} \mathbf{x}_{d} \tag{2,5a}
\end{equation*}
$$

where the Q 's are to be found. Using $(1,11 b)$ and $(2,2 a)$ we obtain

$$
(2,5 b)\left\{\begin{aligned}
y^{c} \mathbf{N}_{c b a} & =c_{3} \mathbf{n}_{b a}-y^{c} K_{(c b a)}^{d} \mathbf{x}_{d}-y^{c}\left[Q_{c b a}^{d e} \mathbf{N}_{d e}+Q_{c b a}^{d} \mathbf{x}_{d}\right] \\
& =\left(c_{3} \delta_{(b a)}^{d e}-y^{c} Q_{c b a}^{d e}\right) \mathbf{N}_{d e}+\left[c_{3} c_{21} H_{b a}^{d}-y^{c} K_{(c b a)}^{d}-y^{c} Q_{c b a}^{d}\right] \mathbf{x}_{d} .
\end{aligned}\right.
$$

Because

$$
y^{c} H_{c b a}^{d}=y^{c} H_{(c b a)}^{d}=H_{b a}^{d}
$$

the tensor

$$
\begin{equation*}
Q_{c b a}^{d} \equiv c_{3} c_{21} H_{c b a}^{d}-K_{(c b a)}^{d}=Q_{(c b a)}^{d} \tag{2,6a}
\end{equation*}
$$

reduces the last member on the right hand side to zero. On the other hand we have by virtue of ($2,3 a$)

$$
\begin{aligned}
3 y^{c} H_{(c b}^{d} \delta_{a)}^{e} \mathbf{N}_{d e} & =y^{c}\left(H_{c b}^{d} \delta_{a}^{e}+H_{b a}^{d} \delta_{c}^{e}+H_{a c}^{d} \delta_{b}^{e}\right) \mathbf{N}_{d e} \\
& =\left(\delta_{b a}^{d e}+\delta_{a b}^{d e}\right) \mathbf{N}_{d e}=\mathbf{2} \delta_{(b a)}^{d e} \mathbf{N}_{d e}
\end{aligned}
$$

Hence the tensor

$$
\begin{equation*}
Q_{c b a}^{d e} \equiv \frac{3 c_{3}}{2} H_{(c b}^{d} \delta_{a)}^{e}=Q_{(c b a)}^{d e} \tag{2,6b}
\end{equation*}
$$

reduces the first member on the right hand side of $(2,5 b)$ to zero so that we have $y^{c} \mathbf{N}_{c b a}=0$. This equation together with $\mathbf{N}_{c b a}=\mathbf{N}_{(c b a)}$ (which we obtain from ($2,5 a$) and (2,6)) leads to ($2,3 b$). The remaining part of the theorem is very easily proved.

Note. If $N>3$ then

$$
y^{d} H_{d c b a}^{e}=H_{c b a}^{e}
$$

and by virtue of $(1,8 a)$ and $(1,9 b)$ (used for the first time) for $s=3, p=4$

$$
\begin{equation*}
y^{d} D_{(d} K_{c b a)}^{e}=y^{d} D_{d} K_{(c b a)}^{e}=-2(Q+1) K_{(c b a)}^{e} . \tag{2,7}
\end{equation*}
$$

Hence $Q_{c b a}{ }^{d}$ as defined by ($2,6 a$) satisfies the relation

$$
\begin{equation*}
Q_{c b a}^{e}=y^{d} P_{a c b a}^{e} \tag{2,8a}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{d c b a}^{e}=P_{(d c b a)}^{e} \equiv c_{3} c_{21} H_{d c b a}^{e}+\frac{1}{2(Q+1)} D_{(d} K_{c b a)}^{e} . \tag{2,8b}
\end{equation*}
$$

In the next section we shall generalize this equation in order to be able to generalize the results of Theorems (2, 1).

§ 3. Auxiliary Lemma.

In the following lemma we use the abbreviations

$$
\begin{align*}
& \text { a) } \left.\quad H_{a_{l} \cdots a_{g} \ldots a_{1}}{ }^{b_{g} \ldots b_{1}} \equiv H_{\left(a_{l} \ldots a_{s}\right.}{ }^{b_{s}} \delta_{\left.a_{g-1} \ldots a_{1}\right)}^{b_{s-1}}{ }^{b_{s-1} \ldots b_{1}}{ }^{5}\right) \\
& \text { b) } \quad k_{a_{u+1} \ldots a_{s} \ldots a_{1}}=\left\{\left\{K_{\left(a_{u+1} \ldots a_{s}\right.}{ }_{b_{s} \ldots b_{1}}^{b_{s}} \delta_{\left.a_{g-1} \ldots a_{1}\right)}^{b_{s-1} \ldots b_{1}}\right)\right\} \tag{3,1}\\
& \text { c) } \quad k_{a_{u+1} \ldots a_{1}} \stackrel{b_{1}}{b_{1}} \equiv K_{\left(a_{u+1} \ldots a_{1}\right)}{ }^{b_{1}} \\
& (u=2, \ldots, N ; s=2, \ldots, u-1)
\end{align*}
$$

and

$$
\begin{cases}c_{r r-1} \equiv{\frac{r c_{r}}{2}}^{6}, & c_{r}^{\prime} \equiv c_{r} k_{r} \tag{3,1d}\\ r=2, \ldots, N & r=3, \ldots, N\end{cases}
$$

where $k_{3}=1$ and k_{r} for $r>3$ is the number taken from the equation $(r=4, \ldots N)$

$$
\left(k_{r} y^{a_{r}} H_{a_{r} a_{r-1} a_{r-2} \ldots a_{1}}^{b_{r-2} \ldots b_{1}}-H_{a_{r-1} a_{r-2} \ldots a_{1}}^{b_{r-2} \ldots b_{1}}\right) t_{\left(b_{r-2} \ldots b_{1}\right)}=0
$$

which holds for any privileged tensor $t_{\left(b_{r-2} \ldots b_{1}\right)}$ whatsoever. Moreover, if $A_{\ldots}^{\ldots \ldots}$ and $B_{\ldots}^{\ldots \ldots}$ are two tensors which satisfy the equation

$$
\begin{equation*}
\left(A_{\ldots}^{\ldots a \ldots}-B_{\ldots \ldots}^{\ldots \ldots}\right) t_{\ldots}=0 \tag{3,1e}
\end{equation*}
$$

for any privileged tensor $t_{\ldots \ldots \ldots}$ whatsoever, then we write

$$
\begin{equation*}
A_{\ldots}^{\ldots a \ldots} \cong B_{\ldots}^{\ldots a \ldots} \tag{3,1f}
\end{equation*}
$$

Lemma (3, 1). If $N \geqq 4$ and if a set of tensors Q satisfies the following conditions
$(3,2)$

$$
\begin{aligned}
& \text { (a) } \\
& Q_{a_{u} a_{u-1} \cdots a_{1}}^{c_{u-1} \ldots c_{1}} \equiv c_{u u-1} H_{a_{u} a_{u-1} \cdots a_{1}}{ }^{c_{u-1} \ldots c_{1}} \quad u=2, \ldots, N
\end{aligned}
$$

$\left.{ }^{5}\right) \quad H_{a_{u} \ldots a_{1}}{ }^{b_{1}}$ is defined by $(1,17)$.
$\left.{ }^{6}\right)$ For c_{r} cf. $(1,10)$.
then the equation

$$
y^{a_{w}} P_{a_{w} \ldots a_{s} \ldots a_{1}} \begin{gather*}
c_{g} \ldots c_{1} \tag{3,3}
\end{gather*} Q_{a_{w-1} \ldots a_{s} \ldots a_{1}}^{c_{g} \ldots c_{1}} \quad w=4, \ldots, N ; s=1, \ldots, w-3
$$

admits a solution $P_{a_{w} \ldots a_{s} \ldots a_{1}}^{c_{s} \ldots c_{1}}=P_{\left(a_{w} \ldots a_{g} \ldots a_{1}\right)} \begin{gathered}c_{1} \ldots\end{gathered}$ homogeneous of degree $s-w$, which is a function of the H 's, K 's as well as of the derivatives up to $\left.D_{a_{w} \ldots . .} D_{a_{q+1}} k_{a_{q} \ldots . . a_{1}}^{c}(q=3, \ldots, w-1)^{7}\right)$ and consequently $Q_{a_{w} \ldots a_{g} \ldots a_{1}}^{c_{g} \ldots c_{1}}$ satisfies the equation

Proof. We see from Theorems (2,1) that the conditions (3, 2a,b) for $u=2,3, v=3$ are satisfied ${ }^{7 a}$) while ($3,2 c$) reduces for $w=4$ to

$$
\begin{equation*}
y^{d} Q_{d c b a}^{e}=c_{4} Q_{c b a}^{e}-y^{d}\left[K_{(d c b a)}^{e}+c_{21} k_{d c b a}^{i j} H_{i j}^{e}\right] \tag{4a}
\end{equation*}
$$

The equation $(3,3)$ (for $w=4$) is equivalent to $(2,8 a)$, where P is given by $(2,8 b)$ so that we have

$$
\begin{equation*}
Q_{d c b a}^{e}=c_{4}\left[c_{3} c_{21} H_{d c b a}^{e}+\frac{1}{2(Q+1)} D_{(d} K_{c b a)}^{e}\right]-\left(K_{(d c b a)}^{e}+c_{21} k_{d c b a}^{i j} H_{i j}^{e}\right) \tag{3.5}
\end{equation*}
$$ which proves our lemma for $w=4$ (and $s=1=w-3$). For the case $w=5 \leqq N$ we have to consider $Q_{a_{s} \ldots a_{1}}^{b_{g} \ldots b_{1}}, s=1,2$. The tensor $Q_{a_{4} \ldots a_{2} a_{1}}^{\substack{b_{1} b_{1}}}$ which appears in $(3,2 c)$ for $w=5, s=2$ is given by $(3,2 b)$ for $v=4$. Because of $(2,7)$ and $(1,9 b)$ we have

(3. 6b) $3 y^{a_{s}} D_{a_{4}} K_{\left(a_{4} a_{3} a_{2}\right.}^{b_{2}} \delta_{\left.a_{1}\right)}^{b_{1}}=-3.2(1+Q) K_{\left(a_{4} a_{2} a_{2}\right.}^{b_{2}} \delta_{\left.a_{1}\right)}^{b_{1}}=-2(1+Q) k_{a_{4} a_{1} a_{1} a_{1}}^{b_{1} b_{1}}$ and

$$
\begin{equation*}
y^{a_{5}} H_{a_{5} a_{4} a_{3} a_{2} a_{1}}^{b_{1}, b_{1}} \simeq \frac{4}{5} H_{a_{4} a_{3} a_{2} a_{1}}^{\substack{b_{1}, \\ \hline}} \tag{3.6c}
\end{equation*}
$$

Consequently
where

$$
\begin{equation*}
P_{a_{5} a_{4} a_{3} a_{3} a_{2} a_{1}}^{b_{1} b_{1}}=P_{\left(a_{5} a_{4} a_{3} a_{2} a_{2} a_{1}\right)}^{b_{2} b_{1}}=\frac{5}{4}\left[c_{32} c_{4}^{\prime} H_{a_{3} a_{4} a_{3} a_{2} a_{1}}^{b_{1} b_{1}}+\frac{1}{2(1+Q)} D_{\left(a_{3}\right.} k_{a_{4} a_{4} a_{4} a_{2} a_{1}}^{b_{1} b_{1}}\right] \tag{3.7b}
\end{equation*}
$$

and these two equations prove our lemma for $w=5 \leqq N$ and $s=2$. In

[^1]order to complete the proof for $w=5$ and $s=1$, we use the relationships deduced from ($1,8 a$) and ($1,9 b$)
\[

$$
\begin{aligned}
& y^{a_{5}} D_{\left(a_{6}\right.} D_{a_{4}} K_{\left.a_{5} a_{3} a_{1}\right)}^{b}=y^{a_{5}} D_{a_{4}} D_{\left(a_{6}\right.} K_{\left.a_{4} a_{2} a_{1}\right)}^{b_{1}}=-3(1+Q) D_{\left(a_{4}\right.} K_{\left.a_{a}, a_{4} a_{1}\right)}^{b_{1}} \\
& y^{a_{5}} D_{\left(a_{6}\right.} K_{\left.a, a_{4} a_{3} a_{1} a_{1}\right)}^{b_{1}}=y^{a_{5}} D_{a_{5}} K_{\left(a_{4} a_{5} a_{2} a_{1}\right)}^{b}=-3(1+Q) K_{\left(a_{4} a_{0} a_{3} a_{1}\right)}^{b_{1}}
\end{aligned}
$$
\]

so that we have by virtue of $(3,5)$ and $(3,6)$

$$
\begin{equation*}
Q_{a_{4} a_{0} b_{2} a_{1}}^{b_{1}}=y^{a_{6}} P_{a_{6} \ldots a_{1}}{ }^{b_{1}} \tag{3,8a}
\end{equation*}
$$

where
and consequently

$$
\begin{equation*}
Q_{a_{s} \ldots a_{1}}^{\stackrel{c_{1}}{1}} \cong c_{5} P_{a_{5} \ldots a_{1}}-\left(k_{a_{5} \ldots a_{1}} \stackrel{c_{1}}{c_{1}}+\sum_{2}^{3} k_{a_{w} \ldots a_{a} \ldots a_{1}}^{\stackrel{b_{q} \ldots b_{1}}{ }} Q_{b_{q} \ldots b_{1}}^{c_{1}}\right) . \tag{3,8c}
\end{equation*}
$$

The equations $(3,8)$ prove the lemma for $w=5 \leqq N, s=1$. Let us now suppose that we already proved the lemma for all $x=4,5, \ldots, w^{\prime}<N$. Then we have in particular

$$
\begin{align*}
& s=1, \ldots, w^{\prime}-3 \tag{3,9}
\end{align*}
$$

where $P_{a_{w^{\prime}} \ldots a_{s} \ldots a_{1}}^{c_{g} \ldots c_{1}}=P_{\left(a_{w^{\prime}}, \ldots a_{g} \ldots a_{1}\right)}{ }^{c_{g}, \ldots a_{1}}$ is a function of the H^{\prime} 's and K 's as well as of the derivatives up to $D_{a_{w^{\prime}} \ldots} D_{a_{q+1}} k_{a_{q} \ldots a_{1}}^{\stackrel{b_{1}}{2}},\left(q=3, \ldots, w^{\prime}-1\right)$ and

Using now the conditions $(1,8 a)$ and $(1,9 b)$ we prove by the same argument as before that

$$
\begin{equation*}
Q_{a_{w^{\prime}}, \ldots a_{s} \ldots a_{1}}^{c_{g} \ldots c_{1}} \cong y^{a_{w^{\prime}+1}} P_{a_{w^{\prime}+1} \ldots a_{s} \ldots a_{1}}^{c_{s} \ldots c_{1}} \quad s=1, \ldots, w^{\prime}-3 \tag{3,11}
\end{equation*}
$$

where $P_{a_{w^{\prime}+1} \ldots a_{g} \ldots a_{1}}=P_{\left(a_{w^{\prime}+1} \ldots a_{g} \ldots a_{1}\right)}{ }^{c_{g} \ldots c_{1}}$ is a function of the H 's and k 's as well as of the derivatives up to $D_{a_{w^{\prime}+1} \ldots} D_{a_{q+1}} k_{a_{q \ldots} \ldots a_{1}}\left(q=3, \ldots w^{\prime}\right)$. Hence we have from $(3,10)$ and $(3,11)$ the equation

$$
\left\{\begin{array}{l}
\left.Q_{a_{w^{\prime}+1} \ldots a_{3} \ldots a_{1}}^{b_{g} \ldots b_{1}} \cong c_{w^{\prime}+1} P_{a_{w^{\prime}+1} \ldots a_{s} \ldots a_{1}} \begin{array}{l}
c_{1} \ldots c_{1} \\
-\left(k_{a_{w^{\prime}+1} \ldots a_{s} \ldots a_{1}}^{c_{s} \ldots c_{1}}+\sum_{s+1}^{w^{\prime}} k_{a_{w^{\prime}+1} \ldots a_{q} \ldots a_{1}}^{{ }_{b_{1} \ldots b_{1}}} Q_{b_{q} \ldots b_{1} \ldots b_{1}}^{c_{g} \ldots c_{1}}\right.
\end{array}\right) \tag{3,12}
\end{array}\right.
$$

for $s=1, \ldots, w^{\prime}-3$. The equation $(3,12)$ for $s=w^{\prime}-2$ may be obtained by a similar argument based on $(3,2 b)$ for $v=w^{\prime}$. The induction based on these results proves our Lemma but for the statement of the homogeneity of the P 's. In order to prove this statement we observe first from (3,2a,b) that $Q_{a_{u} a_{u-1} \ldots a_{1}}^{b_{u-1} \cdots b_{1}}$ resp. $Q_{a_{u} \cdots a_{u-2} \ldots a_{1}}^{b_{u-2} \ldots b_{1}}$ is homogeneous of degree - 1 resp. - 2. Hence from $(3,2 c)$ for $s=w-3$ we see that $Q_{a_{w} \cdots a_{w-3} \ldots a_{1}}^{b_{w-3} \ldots b_{1}}$ must be homogeneous of degree - 3. Consequently, from the same equation for $w=x-1$ we obtain by the same argument that $Q_{a_{x} \ldots a_{x=4} \ldots a_{1}}^{b_{x-4} \ldots b_{1}}$ is homogeneous of degree - 4. Proceeding in the same way we arrive at the conclusion that $Q_{a_{w} \ldots . . a_{s} \ldots a_{1}}^{b_{s} \ldots b_{1}}$ is homogeneous of degree $s-w,(w=4, \ldots, N ; s=1, \ldots w-3)$. Hence $P_{a_{w} \ldots a_{g} \ldots a_{1}}^{b_{g} \ldots b_{1}}$ which satisfies $(3,3)$ must be by virtue of $(3,2 d)$ and $(3,3)$ homogeneous of degree $s-w$.

§ 4. Privileged points. Continuation.

Lemma (3, 1) enables us to prove the following
Theorem $(4,1)$. Let $N \geqq 4$ and let the tensors Q be defined by $(3,2 a, b, c, d)$. Then the points

$$
\left\{\begin{array}{c}
\mathbf{N}_{a_{r} \ldots a_{1}}=\mathbf{N}_{\left(a_{r} \ldots a_{1}\right)} \equiv \mathbf{n}_{a_{r} \ldots a_{1}}-\sum_{1}^{r-1} Q_{a_{r} \ldots a_{s \ldots} \ldots a_{1}}^{b_{s \ldots b_{1}}^{b_{1}}} \mathbf{N}_{b_{s} \ldots b_{1}}, \tag{4,1a}\\
\left(r=2, \ldots, N ; \mathbf{N}_{a} \equiv \mathbf{x}_{a}\right)
\end{array}\right.
$$

are privileged points

$$
\begin{equation*}
y^{a_{p}} \mathbf{N}_{a_{r} \ldots a_{1}}=0 \quad p=1, \ldots, r \tag{4,1b}
\end{equation*}
$$

homogeneous of degree $N+1-r$

$$
\begin{equation*}
\dot{\mathbf{N}}_{a_{r} \ldots a_{1}}=g^{(N+1-r)} \mathbf{N}_{a_{r} \ldots a_{1}} \tag{4,1c}
\end{equation*}
$$

The proof may be accomplished in four steps:
a) Theorems $(2,1)$ are particular cases of our theorem for $r=2$ resp. $r=3^{8}$). Let us assume that we proved our Theorem for all $x=4, \ldots, r^{\prime}-1, r^{\prime} \leqq N$.
b) Denote by $Q_{a_{r}, \ldots a_{s} \ldots a_{1}}^{b_{s} \ldots b_{1}}$ a set of unknown tensors and consider the points

$$
\begin{equation*}
\mathbf{N}_{a_{r^{\prime}} \ldots a_{1}} \equiv \mathbf{n}_{a_{r} \ldots a_{1}}-\sum_{1}^{r^{\prime}-1} Q_{a_{r^{\prime} \ldots a_{s} \ldots a_{1}}^{b_{s} \ldots b_{1}}}^{b_{b_{s} \ldots b_{1}}} \tag{4,2}
\end{equation*}
$$

[^2]Using Lemma $(1,3)$ and the equations $(4,1 a)$ (where instead of r we put $\left.x=2,3, \ldots, r^{\prime}-1\right)$ we obtain from $(4,2)$

On the other hand we have according to $(3,1 a),(1,18 b)$ and by virtue of ($4,1 b$) (for $r^{\prime}-1$ instead of r)

and moreover according to (3,2a) for $u=r^{\prime}-1^{9}$)

Hence if we impose on $Q_{a_{r^{\prime}} \ldots a_{g^{\prime} \ldots a_{1}}} \begin{gathered}b_{g^{\prime}} . . b_{1} \\ g_{1}\end{gathered}\left(s=1, \ldots, r^{\prime}-1\right)$ the conditions $(3,2 a, b, c)$ for $u=v=w=r^{\prime}$ then we obtain

$$
\begin{equation*}
y^{a_{\tau^{\prime}}} \mathbf{N}_{a_{r^{\prime}} \ldots a_{1}}=0 . \tag{4,3b}
\end{equation*}
$$

Moreover from (3, 2a, b, c) for $u=v=w=r^{\prime}$ we obtain (3, 2d). Hence all tensors $Q_{a_{r} \prime \ldots a_{g} \ldots a_{1}} \begin{gathered}b_{g}, . . b_{1} \\ \text { are }\end{gathered}$ symmetric in their subscripts so that we have according to $(4,2)$

$$
\mathbf{N}_{a_{r^{\prime} \ldots a_{1}}}=\mathbf{N}_{\left(a_{\gamma^{\prime} \ldots a_{1}}\right)} .
$$

This equation together with $(4,3 b)$ leads to

$$
\begin{equation*}
y^{a_{p}} \mathbf{N}_{a_{r^{\prime}} \ldots a_{1}}=0 \quad p=1, \ldots, r^{\prime} \tag{4,3c}
\end{equation*}
$$

On the other hand the $Q_{a_{r^{\prime}} \ldots a_{g} \ldots a_{1}} \begin{gathered}b_{g} \ldots b_{1} \\ \left(s=1, \ldots, r^{\prime}-1\right) \text { defined by }(3,2 a, b, c, d) ~\end{gathered}$ are homogeneous of degree $s-r^{\prime}$. Hence $\mathbf{N}_{a_{\tau^{\prime}} \ldots a_{1}}$ are homogeneous of degree $N+1-r^{\prime}$.

[^3]c) Starting with Theorems (2,1) and applying the same arguments as in b), we easily prove the statements of our theorems for all $x=4, \ldots$ $\ldots r^{\prime}-1$. Hence the assumption of section a) is fulfilled.
d) The usual induction based on the assumption of the section a) and on the results of section b) proves our theorem for $r=2, \ldots, N$.

§ 5. Projective normal spaces.

Definition (5,1). The space spanned by the points $\mathbf{x}, \mathbf{N}_{a_{r} . . a_{1}}$ will be denoted by $\stackrel{r-1}{N_{n}}$ and referred to as the $(r-1)$ st projective normal space of our $\mathfrak{P}_{m},(r=2, \ldots, N)$.

Theorem (5, 1). The normal space $\stackrel{r-1}{N}_{n_{r-1}}$ has the following properties
a) It is (x, y, g)-invariant.
b) It is contained in the osculating space $\stackrel{r}{P}_{m_{r}}$ and intersects $\stackrel{s}{P}_{m_{s}}(s<r)$ only in \mathbf{x}.
c) $I f$

$$
\begin{aligned}
(5,1) \quad \text { a) } \quad c_{2} c_{3} \ldots c_{r} & \neq 0, \quad \text { b) } \quad \mathbf{n}_{a_{q} \ldots a_{1}} y^{a_{1}} \ldots y^{a_{p}} \neq 0 \\
q & =3, \ldots, r ; p=2, \ldots, r
\end{aligned}
$$

then its dimension is

$$
\begin{equation*}
n_{r-1}=m_{r}-m_{r-1} . \tag{5,2}
\end{equation*}
$$

Proof. Because the points $\mathbf{x}, \mathbf{N}_{a_{r} \ldots a_{1}}$ are (x, y)-invariant, $\stackrel{r-1}{N_{n_{r-1}}^{1}}$ is obviously (x, y)-invariant. Because $\mathbf{x}, \mathbf{N}_{a_{r} \ldots a_{1}}$ are homogeneous (of degree $N+1$ resp. $N+1-r$) the space spanned by them must be g-invariant.

On the other hand using $(4,1 a)$ as well as the equations $(4,2)$ in $P I$ we see that $\mathbf{N}_{a_{r} \ldots a_{1}}$ may be expressed in the following way

$$
\begin{equation*}
\mathbf{N}_{a_{r} \ldots a_{1}} \equiv \mathbf{x}_{a_{r} \ldots a_{1}}+\sum_{1}^{r-1} \Omega_{a_{r} \ldots a_{s} \ldots a_{1}}^{b_{s} \ldots b_{1}} \mathbf{x}_{b_{s} \ldots b_{1}} \tag{5,3}
\end{equation*}
$$

Hence all points $\mathbf{N}_{a_{r} \ldots a_{1}}$ are in $\stackrel{r}{P}_{m_{r}}$ and consequently $\stackrel{r}{N}_{n_{r-1}}^{\mathbf{1}} \subset \stackrel{r}{P}_{m_{r}}$. Moreover if some point $\mathbf{P} \neq \mathbf{x}$ of $\stackrel{r-1}{N_{n_{r-1}}}$ is in $\stackrel{q}{P}_{m_{q}}(q<r)$ then according to $(5,3)$ it must be a linear combination of points $y^{a_{r}} \ldots y^{a_{a+1}} \mathbf{N}_{a_{r} . . a_{1}}$. Because $\mathbf{N}_{a_{r} \ldots a_{1}} \equiv \mathbf{N}_{\left(a_{r} \ldots a_{1}\right)}$ are privileged points, we have

$$
y^{a_{r}} \ldots y^{a_{a+1}} \mathbf{N}_{a_{r} \ldots a_{1}}=0
$$

and consequently there is no point $\mathbf{P} \neq \mathbf{x}$ of $\stackrel{r}{N}_{n_{r-1}}^{1}$ in $\stackrel{g}{P}_{m_{\boldsymbol{q}}}(q<r)$. Consider now the equations
$(5,4) \quad \begin{cases}a) & \mathbf{n}_{a_{r} \ldots a_{1}}=\mathbf{N}_{a_{r} \ldots a_{1}}+\mathbf{M}_{a_{r} \ldots a_{1}} \\ \text { b) } & \mathbf{M}_{a_{r \ldots a}} \equiv \sum_{1}^{r s} Q_{a_{r} \ldots a_{s} \ldots a_{1}}^{b_{s} \ldots b_{1}} \mathbf{N}_{b_{s} \ldots b_{1}}, \quad\left(\mathbf{N}_{a} \equiv \mathbf{x}_{a}\right)\end{cases}$
(equivalent with (4, $1 a$)) and denote by $\stackrel{r}{P}_{m_{r-1}^{\prime}}^{1} C^{\Gamma} \bar{P}_{m_{r-1}}^{1}$ the space spanned by the points $\mathbf{x}, \mathbf{M}_{a_{r} \ldots . a_{1}}$. Suppose $m_{r-1}^{\prime}<m_{r-1}$. Since $\stackrel{r}{N}_{n_{r-1}}^{1}$ intersects $\stackrel{q}{P}_{m_{q}}(q<r)$ only in \mathbf{x}, the space spanned by the points $\mathbf{n}_{a_{r} \ldots a_{1}}$, which satisfy ($5,4 a$), can not be $\stackrel{r}{P}_{m_{r}}$ for $m_{r-1}^{\prime}<m_{r-1}$ and this together with $(5,1)$ contradicts Lemma (1,4). Because we can not have $m_{r-1}^{\prime}>m_{r-1}$ and the assumption $m_{r-1}^{\prime}<m_{r-1}$ is a contradictory one, we must have $m_{r-1}^{\prime}=m_{r-1}$, so that the space spanned by the points $\mathbf{x}, \mathbf{M}_{a_{r} \ldots a_{1}}$ is the osculating space ${ }^{\stackrel{r}{P}}{ }_{m_{r-1}}$. Hence we see from $(5,4 a)$ and from the statement b) that $(5,2)$ holds.

Note: The points $\mathbf{N}_{\left(a_{r} \ldots a_{1}\right)}(r=2, \ldots, N)$ which (together with \mathbf{x}) span the normal space ${ }^{r} \bar{N}_{n_{r-1}}^{1}$ are linearly dependent even in the maximal case (cf. equation ($4,1 b$)):

Theorem (5, 2). In the maximal case the points $\mathbf{N}_{\left(a_{r} \ldots a_{1}\right)}$ are linearly "interdependent", e.g. any of their linear combination which is equal to zero must be built up as a linear combination of $y^{a_{p}} \mathbf{N}_{a_{r} \ldots a_{1}}(p=1, \ldots, r)$.

Proof. Introduce a special parameter system for which $y^{a}=\delta_{o}^{a}$ at P. Then (5, 3) reduces to

$$
\begin{gather*}
\mathbf{N}_{\left(a_{r} \ldots a_{1}\right)}=\mathbf{x}_{\left(a_{r} \ldots a_{1}\right)}+\sum_{1}^{r-1} \Omega_{\left(a_{r} \ldots a_{g} \ldots a_{1}\right)}^{b_{s} \ldots b_{1}} \mathbf{x}_{b_{1} \ldots b_{1}} \text { at } P \tag{5,5}\\
\left(\alpha_{1}, \ldots, a_{r}=1, \ldots, m\right)
\end{gather*}
$$

while the remaining equations $(5,3)$ reduce to identity $0=0$. In order to prove our theorem, it is sufficient to prove that $\mathbf{N}_{\left(a_{r} \ldots a_{1}\right)}$ are linearly independent: The points $\mathbf{x}_{\left(a_{r} \ldots a_{1}\right)}$ span $\stackrel{\tau}{P}_{m_{r}}$ while the points $\mathbf{x}_{\left(a_{r} o \ldots \ldots o a_{s-1} \ldots a_{1}\right)}$ span $\stackrel{s}{P}_{m_{s}}$. Hence in the maximal case [where the points $\mathbf{x}_{\left(a_{r} \ldots a_{1}\right)}$ are linearly independent] the points $\mathbf{x}_{\left(a_{r} \ldots a_{1}\right)}$ are linearly independent and span (together with \mathbf{x}) a n_{r-1}-dimensional space ${ }^{10}$) $M_{n_{r-1}} \subset \stackrel{r}{P_{m_{r}}}$ not contained in ${ }^{r} \bar{P}_{m_{r-1}}^{1}$. Consequently by virtue of $(5,5)$ the points $\mathbf{N}_{\left(a_{r} \ldots a_{1}\right)}$ are linearly independent.

Note. Suppose $m=1$. Because $y^{a} \mathbf{x}_{a}=(N+1) \mathbf{x}$, the points $\mathbf{x}_{0}, \mathbf{x}_{1}$ are on the tangential line (the first osculating space $\stackrel{1}{P}_{1}$) of \mathfrak{P}_{1} at \mathbf{x}. Introduce a parameter system y^{a} for which $y^{a}=\delta_{0}^{a}$ at \mathbf{x}. Then we have in this parameter system

$$
0=y^{a} \mathbf{N}_{a b}=\mathbf{N}_{o b} \text { at } \mathbf{x}
$$

10) $\quad n_{r-1}=\binom{m+r-1}{r}=\binom{m+r}{r}-\binom{m+r-1}{r-1}=m_{r}-m_{r-1}$.

Hence the set of points $\mathbf{N}_{a b}$ reduces here to \mathbf{N}_{11} and the space $\stackrel{1}{N}_{1}$ spanned by $\mathbf{x}, \mathbf{N}_{a b}$ is the line which joins the points \mathbf{x} and \mathbf{N}_{11} (the first projective normal). Because $\stackrel{1}{N}_{1}$ is y-invariant it does not depend on the choice of parameters. Hence if we chose again an arbitrary parameter system, we obtain the same straight line $\stackrel{1}{N}_{1}$ which contains the points $\mathbf{x}, \mathbf{N}_{a b}$. It may be easily proved by the same argument that the space $\stackrel{r-1}{N}_{n_{r-1}}^{1}$ is a straight line (the ($r-1$)st projective normal) which contains the points $\mathbf{x}, \mathbf{N}_{a_{r} \ldots a_{1}}(r=2, \ldots N)$.

Indiana University
Department of Mathematics

Bloomington (Indiana), U.S.A.

[^0]: ${ }^{1}$) The condition ($1,9 a$) is satisfied for $r=2$ and if $N>2$ also for $r=3$ (cf. the equation ($1,4 b$)).
 ${ }^{2}$) We impose this condition in order to simplify the final results. The device used later on (cf. the equations (1.12)) may easily be generalized for the case where ($1,9 a$) does not hold.

[^1]: ${ }^{7}$) Its construction will be given in the proof.
 ${ }^{7 a}$) cf. the equations $(2,5)$ and $(2,6)$.

[^2]: ${ }^{8}$) For $r=2$ the equations (3, 2, b, c, d) do not exist. For $r=3$ the equations $(3,2 c, d)$ do not exist (cf. the equation ($2,8 a)$).

[^3]: ${ }^{9}$) According to our assumption in the section a) of the proof, the equation (3, 2a), resp. (3, $2 b$), resp. ($3,2 c, d$) exist for $u=2, \ldots, r^{\prime}-1$, resp. $v=3, \ldots, r^{\prime}-1$, resp. $w=4, \ldots, r^{\prime}-1$.

