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§ 1. Introduction. 

1. 1. If X denotes an irrational number, it is weIl known, that the 
sequence 

X, 2 X, 3 X, ... 

is uniformly distributed mod 1; from this it follows that 

(1) 
1 N 1 

Lim N 2: g(nx) = f g(t) dt , 
N-+oo n=l 0 

if g(t) denotes any bounded R-integrable function with period 1. 
It is clear that (1) generally becomes false, if in stead of supposing 

that g(t) is Riemann-integrable, we only assume th at g(t) is Lebesgue
integrable, since we can arbitrarily change the value of g(t) at aU points 
nx (mod 1), without changing the integral. 

In 1922 A. KHINTCHINE 1), considering the special case that the 
periodic function g(t) for 0 ~ t < 1 denotes the characteristic function 
of a measurable set & in (0, 1), introduced the question whether in this 
case (1) is true for almost all x. He proved this to be the fact under 
certain conditions as to the nature of &. One may generalise KHINTCHINE'S. 
problem by replacing the sequence (nx) by (À"x), where 

(2) À1 < À2 < ... 
denotes a sequence of increasing integers. In the special case I.,. = a,n, 

where a, IS a fixed integer > 2, RAIKOFF proved that the formula 

(3) 
1 N 1 

Lim N 2: g(ÀnX) =: f g(t) dl 
N-+oo 11 == 1 0 

holds almost everywhere in x for any (periodic) function which is Lebesgue
integrable. 2) 

F. RIESS 3) pointed out that RAIKOFF'S theorem is actually an in stance 

1) A. KHINTCHINE, Ein Satz über Kettenbrüche mit arithmetischen Anwen· 
dungen. Math. Zeitschr. 18, 289-306 (1923). 

2) D. RAIKOFF, On some arithmetical properties of summabie functions. Rec. 
Math. Moscou, N.s. 1, 377 -384 (1936) (Russian with eng!. summary). 

3) F. RIEss, 8ur la théorie ergodique. Comment. Math. Helvet. 17, 221-239 
(1945). 
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of the classical ergodic theorem. This may be the cause that RAIKOFF'S 

special case Ä." = an is easier to deal with than KHINTCHINE'S case J .... = n. 
KAC, SALEM and ZYGMUND 4) proved a generalisation of RAIKOFF'S 

result, considering lacunary sequences (2), where Ä." need not be an 
integer, but where 

Ä.,,+ 1 > q Ä." , 

q denoting an arbitrarily given constant > 1. They proved that (3) 
holds almost everywhere in x, if g(t) denotes a function of the class L2, 
the Fourier coefficients of which satisfy a certain condition. 

As far as I know, further results coneerning the above problem are 
unknown, ó) even in the case Ä." = n. 

1. 2. 
(f(n, x)) 

In this paper I shall consider a general class of sequences 
(n = 1, 2, ... ; O~ x <1) and a general class of periodic 

functions g(x) E L2 and I shall prove that the relation 

( 4) 
1 N 1 

Lim N L g(f(n, x)) = f g(t) dt 
N-->oo 10-1 0 

holds almost everywhere in x (0 < x ~ 1) (Theorem 2). 
The class of sequences (f(n, x)) includes e.g. 

a. the case t(n, x) = xn 
b. the case t(n, x) = Ä."x 

if (Ä.,,) is any sequence (2) of real numbers satisfying 
Ä.,,+1 - Ä." ~ !5 > 0, where !5 is a constant, 

c. the case t(n, x) = (1 + x)1o. 

Obviously all these cases are included in the following theorem 1, 
which itself, as we shall prove in 1. 4, is a special case of the main 
theorem 2. 

4) M. RAc, R. SALEM and A. ZYGMUND, A gap theorem. Trans. Amer. Math. 
Soc. 63, 235-243 (1948). 

5) Af ter the finishing of the manuscript, I discovered the interesting recent 
paper of P. ERDÖS, On the strong law of large numbers. Trans Amer. Math. Soc. 67 
51-56 (1950). 

Mr ERDÖS deals with the special lacunary case (2) which also has been treatea 
by KAC·SALEM·ZYGMUND (l.c. 4)) and gives an interesting improvement of their 
result. But still more interesting is his Theorem 1, which states that there exists 
a function g(x) E L2, and a sequence of integers 

such that for almost all x 

~ f g(Ä."x) -+ 00. 
N n~1 

It follows from ERDÖS'S theorem that in my above Theorema 1, 2 in any case 
some condition on the Fourier coefficients, like (13), is necessary. 
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Theorem 1. Let b denote a positive constant. Let 1(1, x), 1(2, x), ... 
be a sequence ol real numbers delined lor every value ol x (0 < x < 1), 
such that, lor each n = 1, 2, ... , the lunction t(n, x) ol x has a continuous 
derivative t~ > b which is either a non-increasing or a non-decreasing 
function ol x, whereas the expression I~(nl' x) - 1~(n2' x) for each couple 
of positive integers n1 -=1= n2 is either a non-increasing or a non-decreasing 
lunction ol x lor 0 < x ::;; 1, the absolute value of which is > b. 

Let g(x) E L2 denote a periodic function of period 1, and putting 

let 

00 

g (x) ~ Co + L ck e2"ikz 
k ~ -00 

k*O 

~1]N(N where 'YJ(N) denotes a positive non-increasing lunction, such that L.J 

converges. Then (4) holds almost everywhere in 0 < x < 1. 

1. 3. We now state the main result of the paper. 

Definition 1. Let I(n, x) lor n = 1,2, ... , be a real ditferentiable 
lunction of x lor 0 < x < 1, the derivative ol which is either a non-increasing 
or a non-decreasing, positive function of x. Then put 

(5) A" = Max (/, (~, 0) , /' (~, 1)) . 

Further, let lor each couple ol integers n1 > 1, n2 > 1, n1 -=1= n2 the 
derivate (j)~ ol the lunction 

(6) 

be -=1= 0 and either a non-increasing, or a non-decreasing lunction ol x in 
O<x<1. 

Then put 

(7) 

lor all integers M > 0 and N > 1. 

Definition 2. Let g(x) denote a periodic function ol the class L2 in 
o < x < 1 with period 1 and mean value 0, i.e. 6) 

(8) 

and put 

(9) 

00 

g(x) ~ L ck e2nikz 

k~ -00 

1 

(m > 0). 

8) As the assumption Co = f g(x) dx = 0 may be made without 10ss of generality, 
o 

we shall put Co = 0 for the rest of the paper. 
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Theorem 2. 
1. Let 01' O2, Oa denote 8uitably cho8en ab80lute constants. Let 1]1(n} 

and 1]2(n) denote two po8itive non-increasing lunctions ol n = I, 2, ... 
8uch that 

( IO) 
00 

~ TJl(n) < 00' 

,L.; n ' 

2. Let f(n, x) (n = 1,2, ... ) denote the functions of Definition I and 
let 

M+N 
(ll) L A" < 01 N (N ~ I) 

,, - M+l 

(12) A (M, N) < 021]~ (N) (M ~ 0, N ~ I). 

3. Let g(x) denote the lunetion of Definition 2 and let 

(13) (m ~ I). 

Then 

(14) 
1 N 

Lim N L g(f(n, x» = O. 
N->oo ,, - I 

1. 4. It is clear that the functions f(n, x) of theorem I satisfy the 
conditions of theorem 2, for if one ranges the N numbers 

f~(M + I, x), f~(M + 2, x), ... , f~(M + N, x) 

in increasing order, the difference between each two consecutive ones is 
at least {J, and we find 

M+N N 
~ 1 ~ 1 1 

,L.; ~:::;;,L.; ",15 < 1'" log 3N. 
,, - M+l j ",( ,) 1' - 1 

".-1 N 

~ 1 ~ 1 2 
1 1 :::;; 2 - < - log 3 N. 

1!",(n1, x) -j",(nl' x) 1 - ",15 15 
",-M+l 1'-1 

Hence 
M+N M+N M+N 

~ A" < ~ I 1 + ~ I 1 :::;;; log 3N 
.. -M+l ,, - M+l j",(n, O) .. - M+l j",(n, 1) 

and 

A(M,N) < : IOg;N. 

I. 5. With a different method, which only holds for the case 
f(n, x) = À,. x, where the Ä" are integers satisfying (2), I have proved a 
theorem, which is somewhat sharper than Theorem I, as the inequality 

00 

for L / c .. /2 is replaced by a weaker one. I shall publish those 
.. -N+l 

results elsewhere. 
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§ 2. Some Lemma's. 

2. 1. Lemma 1. Let the function 

( 15) 
00 

g (x) R:i L Ck e2"ik" 
k~ -00 

belang to the class L2 and put 

( 16) (m > 0) 

and 

( 17) 
1 a 

G(x,a) = 2aLg(x+t)dt (a> 0). 

Then 
00 

(18) G (x, a) R:i L Ck e2nih', 
k--oo 

where 

(19) C 
_ sin2nka 

k - 2 nka Ck (k:S 0), 

(20) 

(21) f I C k I < -1-1/ RI' (p > I), 
k=p+l - 2na p 

~ IC I < VR;; 
k-l k - 4a ' 

whereas the relation 

00 

(22) G(x, a) = L Ck e2nikx 

k- -00 

holds uniformly in x. 

Remark. The condition g(x) E L2 is not required for the proof of 
all the statements of the lemma, but a refinement in that direction 
would be of no use for our purpose. 

Proof. As is proved in textbooks on Fourier-series,7) any Fourier
series, whether convergent or not, may be integrated term by term 
between any limits; i.e. the sum of the integrals of the separate terms, 
is the integral of the function of which the series is the Fourier series. 
Now applying this process to the function 

00 

g(x+ t) R:i L (ck e2"ikx). e2"ikt, 
k- -00 

integrating with respect to t between the limits - a and a, we immediately 
find (22) and (19). We now shall prove the formula (21), from which it 
is immediately clear that (22) holds uniformly in x. 

7) E.g. cf. E. C. TITCHMARSH, The theory offunctions, Oxford Univ. Press, (1939). 
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From (19) we have for p ~ 0, q ~ 1 

using the CAUCHy-SCHWARZ-RIEMANN-inequality; henee 

~ IOkl ~ _1_ ~ VBo < VR;; 
k-l 2na V6 4a 

and, if p ~ 1: 
00 

I>f 10 I ~ _1_ RIl. (f dU)I/. = _1_ 1;R;, 
k=l>+l k - 2na I> ut 2na V p' I> 

whieh proves (21). 
Now from the faet that (22) holds uniformly in x we deduee immediately 

that the right hand side is the Fourier series of its sum, whieh proves (18). 
Finally we note that (20) is an immediate eonsequenee of (16) and (19) 
because of 

I sin 2 nka I ~ 1. 
2nka -

Lemma 2. 1f g(x) E L2 and G(x, a) (a> 0) denote tke functions of 
(15) and (17) and if Rm is defined by (16) (m ~ 0), we have 

1 
(23) f Ig(x)-G(x, a) 12 dx ~ 100 Ro m' a'+ 8Rm, 

o 

for eack integer m ~ 1 wkick satisfies 

2!1lma~1. 

Proof. By Lemma 1 we have (see (15) and (18)) 

00 

g(x)-G(x, a) ~ L (ck -Ok)e2"iko:, 
k - -oo 

henee 

() G( ) ~ (1 sin2nka) 2niko: g X - x, a ~ L. ck - 2 k e , 
k- -00 n a 

by (19). Now, sinee g(x) and G(x, a) belong to L2 (G(x, a) being a eon
tinuous funetion of x), we have, by PARSEVAL'S theorem, 

(24) 

Now we note that 

(
1 _ sin 2 nka)2 < 4 

2nka -
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and also that 

(
I_Sin2nka)2 < (2nka)4 (6,5)4m4a4 100 4 4 

2nka = (3!)2 < 62 < ma, 

if 1 < k < m, and 2 TC m a < 1. 
Therefore we have by (24) 

1 m 00 

Jlg(x)-G(x,a)12 dx<100m4 a4 L Ick 12 +8 L Ick l2 < 
o k~ 1 k~m+l 

Q. e. d. 

Lemma 3. Let I(n, x) lor n = 1, 2, . .. denote a real continuous 
lunetion ol x lor a < x < b, and let 

(j)(~, n2, x) = l(nI , x) - l(n2, x) for n1 -::/::- n2 

have a continuous derivative (j)~, which is -::/::- 0 and either non-decreasing 
or non-increasing lor a < x < b. 

Finally, put 

Then we have lor N > 2, h > 0 (h not depending on n and x) 

b N A SI L e2nih/(n.xl 12 dx ~ (b-a) N + 2 N2. 
a n~l h 

This lemma I have proved in a previous paper. 8) I de duce from it 
the following 

Lemma 4. Let I(n, x) lor n = 1, 2, . .. denote the lunctions ol 
Delinition 1, and let A (M, N) be delined by (7). Then lor each integer 
h-::/::-O which does not depend on n and x we have 

f 1 MiN e2nihf(n.zI12dx < N + A(M,N) N2. 
o n~M+l h 

(M > 0, N > 1). 

Proof. For M > 0 consider the sequence 

I(M + 1, x), I(M + 2, x), ... 

These functions satisfy the conditions of Lemma 3 with I(M + n, x) 
in stead of I(n, x) and with a = 0, b = l. The corresponding number 
AN defined in Lemma 3 (a = 0, b = 1) is identical with the nu mb er 
A (M, N) which was defined by (7). Therefore Lemma 4 is an immediate 
consequence of Lemma 3. 

Lemma 5. Let I(n, x) lor n = 1, 2, . .. denote the lunctions ol 

8) J. F. KOKSMA, Ein mengentheoretischer Satz über die GIeichverteilung 
modulo Eins. Comp. Math. 2, 250-258 (1935). 
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Delinition 1, let g(x) denote the lunetion ol Delinition 2, let G(x, a) (a> 0) 
denote the lunction which is delined by (17) and linally, let 

M+N 
(25) S(M,N,x;a) = .L G(f(n,x),a). 

n-M+l 

Then lor each integer p > 1 

j
l,S(M, N, x; al2dx~ 4 RoNp+ 8 RoN2A (M, N) log 3p+ 

(26) _ 
+ _1_ N '/, 1 ,: Ro Rf) + ~ N2 1/ Ro Rp A (M N) 10 3 + _1_ N2 Rf) 

nal I p na r p , g P n1az p , 

where A (M, N) and Rf) are delined by (7) and (9) (Delinition 1 and 2). 

Proof. Using Lemma 1, we deduce from (22) and (25) 

M+N 00 00 M+N 
S (M, N, x; a) =.L .L Ok e2nik/ln.z) = .L Ok .L e2nik/ln.z). 

n- M+l k- -00 k- -00 n-M+l 

Rence 

(p ~ 1), as the inner sum is in absolute value ~ N. 
Therefore we have 

and applying the CAUCHY-SCHWARZ-RIEMANN-inequality 

f) f) M+N 
IS(M,N,x;a)12~4(.L IOkI2)( LIL e2nik/ln''')12)+ 

k-l k-l n- M+l 
00 f) M+N 00 

+ 8N ( .L IOkl) ( .L IOkl1 .L e2nik/ln.z)I) + 4N2 ( .L IOk!)2. 
k- f)+l k-l n- M+l k-v+l 

Integrating this and applying (20) and (21) we find: 

(27) 

Now we have, by Lemma 4, 

j I MiN e2nik/ln.z) 12 dx ~ N + A (M, N) N2. 
o n- M+l k 
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Moreover applying the CAUCHy-SCHWARZ-RIEMANN-inequality for 
integrals, we find 

1 M+N 1 1 M+N 
f I L e2nikf(n • .,) I dx < (f 12 dX)I/ • . (f I L e2"ik/(n . .,) 12 d~)'/· 
o n-M+l 0 0 n-JI+l 

by MINKOWSKI'S inequality. Therefore it follows from (27) 

JIS(M,N,x;a)1 2dx<4Ro i (N+A(~,N)N2)+ 
o k-l 

+ 4N I, Rp i IC I (ViV + NI" A (M,N)) + N2 . R p 
na P k-l k k n 2 a 2 P 

and hence, by (21), since 

PIP (P 1 )1/. V-1~ 
k~l ICkl . lik < (k~1ICkI2)'/. k~1 7ë < 2 Ro V log 3p, 

we have 

1 

fIS(M,N,x;a)1 2 dx < 4RoNp+ 8RoN2A(M,N)log3p+ 
o 

+ _N_'/'--,V1fo-"-2R~o l ,'R p + 8N2 VBo '1/ Rp VA (M, N) Vlog 3p + ~22 R p, 
na P na ' P nap 

which proves (26). 

Lemma 6. Let Q (x) > 0 denote a periodie lunction with period 1, 
which is Lebesgue-integrable. Let 1p(x) denote a dilferentiable lunetion in 
(0,1), such that 1p' (x) is a positive and either a non-increasing, or a non
decreasing lunetion ol x in (0, 1). Put 

(28) A = Max (lp' ~O) , lp' ~l) , 1). 
Then we have 

I 1 
(29) f Q (1p(x» dx < 8 A.r Q(u) d'u. 

o 0 

Proof. If lJI(u) denotes the inverse function of u = 1p(x), we have 

(30) 
I '1'(1) 

f Q (1p (x» dx = f Q (u) IJl' (u) du. 
o '1'(0) 

We now distinguish two cases. 
A. If 

1p(1)-1p(0) < 8, 

then the right hand side of (30) is 

'1'(1) 1 

< A f Q (u) du < 8 A f Q (u) du, 
'1'(0) 0 
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because of (28) and the fact that Q >- 0 is periodic. In this case therefore 
(29) has been proved already. 

B. If 
tp(I)-tp(O) > 8, 

then we write (30) in the form 

(31) j 
1 B v+1 

f Q (tp(x)) dx = ~ f Q (u) lJI' (u) du + 
o 7~A v 

A '1'(1) + f Q(u) lJI' (u) du + f Q(u) lJI' (u) du, 
'1'(0) B 

where we have put 

A = [tp(O)] + 2 , B = [tp(I)]-3. 

Now by the same argument as we have used in A, we have 

A 1 

(32) f Q(u) lJI'(u) du < 3,A f Q(u) du, 
'1'(0) 0 

(33) 
y>(l) 1 

f Q(u) lJI' ('u) dn < 4,A f Q (u) duo 
B 0 

We now deal with the sum on the right hand side of (31) and write 

B v+1 B 1 

~ f Q (u) lJI' (u) du = ~ f Q(v + 11) lJI' (v + 11) dv = 
v - A v .-A 0 

1 B B+1 1 

= f Q (v) { ~ lJI' (v + 1I)} dv ~ { ~ lJI' (1I)} f Q (v) dv, 
o .-A v - A 0 

since lJI'(u) is either non-increasing of non-decreasing. Now 

B+1 B+2 '1'(1) 

~ lJI' (11) ~ f lJI' (u) du < f lJI' (u) du = [lJI(um!M = I, 
v - A A-I '1'(0) 

and therefore 

R 0+1 1 

(34) ~ f Q(u) lJI'(u) du ~ f Q(u) duo 
o - A • 0 

Combining (31), (32), (33), (34), we find 

1 1 
f Q(tp(x)) dx < 8 ,A f Q(u) du, 
o 0 

Q. e. d. 
because of ,A > l. 

Lemma 7. 1f I(n, x) (n = 1,2, .. . ) and g(x) denote the lunctions ol 
Delinition 1 and Delinition 2, and il we put 

M+N 
(35) S*(M,N,x)= ~ g(f(n,x)), 

n-M+1 
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where M 2 0, N > 1 are integers, we have for every positive a, and every 
positive integer m, satisfying 2 nma < 1 and for every positive integer 
p the inequality 

(36) + {4 Ro Np + SRoN2A(M,N) 10g3p + 
--l- Na/·l/ RoRp + 8 N2 1/ RoRp A (M N) 10 3 + N2 Rp }'I. 
'na2 p na r p , g P n 2a2 p , 

using the notations of Definitions 1, 2. 

Proof. If G(x, a) (a > 0) is defined by (17) and if 8 (M, N, x, a) 
denotes the sum (25), we find from (35) by MINKOWSKI'S inequality 

(37) j
l 1 

{f IS*(M,N,x) 12 dx}'/. < UI8*(M,N,x)-8(M,N,x; a) 12 dx}'/.+ 
o 0 

1 + {f IS(M,N,x;a)12dx}'/ •. 
o 

Now by (25) and (35) 

1 

f 18* (M,N,x) -S(M,N,x; a) 12 dx = 
u 

(3S) 
1 M+N 

=f 1 L (g(f(n,x))-G(f(n,x),a))12dx < 
o n~M+l 

M+N 1 

< N L f Ig(f(n,x)) - G (f (n,x), a) 12 dx 
n-M+N U 

using the CAUCHy-SCHWARZ-RIEMANN-inequality for sums. Applying 
Lemma 6 with 

Q (x) = I g(x) - G(x, a} 12 • 'lp (x) = !(n, x), 
we find 

1 1 

f Ig(f (n,x) )-G (f(n,x), a) 12 dx < S (An+ 1) f Ig(u) -G (u, a) 12 du, 
o 0 

where A" is defined by (5). Therefore we have by Lemma 2 

1 

flg(f(n,x))-G(f(n,x),a)12dx < S(An +l) (100Rom4 a4 + SRm) 
o 

lor every integer m > 1 which satisfies 2 nma < 1. Therefore we have 
by (3S) 

1 M+N 

J 18 * (M,N,x)-8(M,N,x; a) 12 dx < (100Rom 4 a4+SRm)N L S(A" + 1) 
o ,,~M+l 

1 + ais (M,N, x; a) 1
2 dx r/ .. 

u 
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Now app1ying Lemma 5 (p ~ 1), we find from (39) and (26) immediately 
(36), which proves Lemma 7. 

Lemma 8. Be 'fJ (x) > 0 and non-increasing lor x ~ 1, such that 

00 

(40) }; TI~) < 00. 

N-l 

Then we have lor any positive e 

( 41) 
N-l . 

and also 

(42) 'fJ (N) log N -+ 0, as N -+ 00. 

Proof. A. It is clear that TI~e) is a non-increasing function of N 

and therefore 
00 00 

~ TI (Ne) l'f I TI (tt
e
) dt ~ ~ < 00 , converges. 

dt 1 du 
Now putting t" = u, we find -t = - -, hen ce e u 

T T' 

I TI (te) dt = ..!. I TI (u) du 
t e u ' 

1 1 

, 00 

which proves the first assertion, since .1) TI ~) < 00. 

N-l 
00 

B. As 'fJ(N)fN is non-increasing and as .1) TI~) < 00, we conclude 
N - l 

from a weil known theorem that also the series 

00 

L 'fJ (2") < 00 • 
,,-1 

Since the general term of this series is a non-increasing function of n, 
we have by another weil known theorem 

n'fJ (2") -+ 0 , as n -+ 00. 

Now let N denote a positive integer> 2 and be n the integer for which 

2":-::;:: N < 2"+1. 

Then we have 

'fJ (N) log N <~'fJ (2") (n + 1) log 2 -+ 0 as N -+ 00. 

Q.e. d. 
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Lemma 9. Let 'YJl(N) and 'YJ2(N) be positive non-increasing lunetions 
such toot 

00 

}; 7Jl~N) < 00, 

Then V'YJl(N) 'YJ2(N) is also a non-increasing lunetion ol N, such that 
00 

}; V7Jl (N~ 7Jz (N) < 00. 

N~l 

Proof. It is trivial that V'YJl(N) 'YJ2(N) is a non-increasing function. 
Further by the CAUCHY-SCHWARZ-RIEMANN-inequality 

which proves the lemma. 
Finally we use a lemma, which is a special case of a theorem due to 

I. S. GÁL and the author 9), and which has also been proved in a joint 
paper by R. SALEM and the author: 10) 

Lemma 10. Let I,,(x) E ij (0, 1) (n = 1, 2, ... ) (p > 1) be a sequence 
ol ,functions such toot 

1 M+N 
f I L In (X) 11> dx < C (M + N)I>-U NU 'YJ (N), 
o ,,~JI+l 

where C> 0, a> 1 are constants and where 'YJ(N) denotes a p08itive non-
increasing lunetion ol N such that L 'YJ(N)JN < 00. . 

Then 
1 N 

N L In(x)~O. as N~(oo), 
n~l 

almost everywhere in (0, 1). 

§ 3. Pmol ol Theorem 2. 

We put (N > 1) 

(43) 
1 

a = 2nNI/.' m = [NII.], p = [NI.]. 

9) 1. S. GÁL and J. F . KOKSMA, Sur l'ordre de grandeur des fonctions sommables. 
These Proc. 53, 638-653 (1950) = Indag. Math. 12, Fase. 3 (1950). 

10) J. F. KOKSMA and R. SALEM, Uniform distribution and Lebesgue integration, 
Acta Sci. Math. Szeged. 12B, 87 -96 (1950). 

The main theorem of this joint paper is closely related with the above theorems, 
as it deals with the problem, whether from the uniform distribution modulo 1 of a 
sequence UI' U 2 , ••• , may be concluded that 

1 N 1 
Lim N L g(un + x) = f g(x) dx 
N-)-oo n - l 0 

for a given g(x) E L2 and for almost all x. 
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Then m > 1, p ~ 1, 2:rt m a ~ 1. 
Further we have by (13) 

(44) 

(45) 

Rm = 0 (1J2 (m)) = 0 (1J2 (N'/.)) , 

Rf) = 0 (1J2 (p)) = 0 (1J2 (N'/.)) , 

as 1J2(n) is non-increasing. 
We now apply Lemma 7. Substituting (43), (44), (45), (ll), (12) in 

(36) we find 

+ 0 ({ N'I, + N2 1JI (N) log 3 N + NUl. V 1J2 (N'/.) + NUl. V 1J2 (N'/.) 1J~ (N) log 3 N 

+ N'1'1J2 (N'/.)}'/.). 

Rence using MINKOWSKI'S inequality and applying Lemma 8, i.e. 

1Jl (N) log 3 N ~ 0 and 1J1 (N) ~ 0, 1J2 (N'/.) ~ 0, 

we find 

dis· (M, N, x) 12 dx r/. = 0 (NUl .. + N V1J2 (N'/.) + N V1Jl (N)). 
o 

Rence by Lemma 9 

1 

fiS· (M, N, x) 12 dx = 0 (N21J (N)), 
o 

where 1J(N) is a positive non-increasing function such that 
00 

E TJ~) <00. 
N-I 

Therefore by Lemma 10 and (35) 

S· (0, N, x) = o(N) 
Q.e.d. 

almost everywhere in 0 < x < 1. 


