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§ 1. Introduction.
1.1. If z denotes an irrational number, it is well known, that the
sequence
z, 2x, 3x,...
is uniformly distributed mod 1; from this it follows that

(1) Lim% f g(nz) =

N—oo n

g (t) dt,

o=

if g(¢) denotes any bounded R-integrable function with period 1.

It is clear that (1) generally becomes false, if in stead of supposing
that g(¢) is Riemann-integrable, we only assume that g(¢) is Lebesgue-
integrable, since we can arbitrarily change the value of g(t) at all points
nx (mod 1), without changing the integral.

In 1922 A. KHINTCHINE !), considering the special case that the
periodic function g(f) for 0 =< ¢ < 1 denotes the characteristic function
of a measurable set & in (0, 1), introduced the question whether in this
case (1) is true for almost all z. He proved this to be the fact under
certain conditions as to the nature of §. One may generalise KHINTCHINE’S
problem by replacing the sequence (nx) by (4,x), where

(2) M<l<...

denotes a sequence of increasing integers. In the special case 4, = a®,
where a is a fixed integer = 2, RAIKOFF proved that the formula

g(t) dt

S— -

. 1 X
(3) Lim — Zlg(lnx) =

N—>oo
holds almost everywhere in 2 for any (periodic) function which is Lebesgue-

integrable. 2)
F. Rigss 3) pointed out that RAIKOFF’s theorem is actually an instance

1) A. KHINTCHINE, Ein Satz iiber Kettenbriiche mit arithmetischen Anwen-
dungen. Math. Zeitschr. 18, 289 —306 (1923).

2) D. RAIKOFF, On some arithmetical properties of summable functions. Rec.
Math. Moscou, N.s. 1, 377 —384 (1936) (Russian with engl. summary).

3) F. Riess, Sur la théorie ergodique. Comment. Math. Helvet. 17, 221 —239
(1945).
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of the classical ergodic theorem. This may be the cause that Ramxorr’s
special case A, = a" is easier to deal with than KHINTCHINE’S case 4, = =.

Kac, SaLEM and ZyoMuND 4) proved a generalisation of RAIRKOFF’s
result, considering lacunary sequences (2), where A, need not be an
integer, but where

ly1242,,

g denoting an arbitrarily given constant > 1. They proved that (3)
holds almost everywhere in z, if g(¢) denotes a function of the class L2,
the Fourier coefficients of which satisfy a certain condition.

As far as I know, further results coneerning the above problem are
unknown, %) even in the case 4, = n.

1.2. In this paper I shall consider a general class of sequences
(f(n,xz)) m=1,2,...; 02 =1) and a general class of periodic
functions g(z) € L? and I shall prove that the relation

1 N

& Lim 3 ¢(/(m,)) =

N—oo

g(t)dt

P Le—

holds almost everywhere in z (0 < x < 1) (Theorem 2).
The class of sequences (f(n, z)) includes e.g.

a. the case f(n,x) = zn

b. the case f(n,z)= Az
if (4,) is any sequence (2) of real numbers satisfying
Avi1— A, = 6> 0, where J is a constant,

c. the case f(n, z)= (14 z)".

Obviously all these cases are included in the following theorem 1,
which itself, as we shall prove in 1.4, is a special case of the main
theorem 2.

4) M. Kac, R. SaLEm and A. ZvyamMUuND, A gap theorem. Trans. Amer. Math.
Soc. 63, 235—243 (1948).

5) After the finishing of the manuscript, I discovered the interesting recent
paper of P. ErD6s, On the strong law of large numbers. Trans Amer. Math. Soc. 67
51 —56 (1950).

Mr Erpos deals with the special lacunary case (2) which also has been treatea
by Kac-SALEM-ZyGMUND (l.c. %)) and gives an interesting improvement of their
result. But still more interesting is his Theorem 1, which states that there exists
a function g(x) € L?, and a sequence of integers

M<dy<...

such that for almost all z

1 N
N ﬂzl g(4,x) = oo.

It follows from ERDGs’s theorem that in my above Theorems 1, 2 in any case
some condition on the Fourier coefficients, like (13). is necessary.
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Theorem 1. Let § denote a positive constant. Let f(1, z), f(2, z),
be a sequence of real mumbers defined for every value of x (0 <z < 1),
such that, for each n=1, 2, . .., the function f(n, x) of x has a continuous
derivative f, = 0 which is either a mon-increasing or a mon-decreasing
function of x, whereas the expression f,(n,, x) — f,(ny, x) for each couple
of positive integers n, % m, s either a non-increasing or a non-decreasing
function of x for 0 =< x =< 1, the absolute value of which is = é.

Let g(x) € L? denote a periodic function of period 1, and putting

(o o]

g(x) ~ ¢, +k D, ¢ etk (c_x=70C),
=—0o0
k+0

let
2 e =0 (n(N)),

n=N+1
A . o . . % th n(N
where n(N) denotes a positive non-increasing function, such that N

converges. Then (4) holds almost everywhere in 0 < x < 1.

1. 3. We now state the main result of the paper.

Definition 1. Let fn z) for n=1,2,..., be a real differentiable
function of x for 0 < x =< 1, the derivative of whwh 18 either a non-increasing
or a mon-decreasing, posztwe function of z. Then put

1
(5) 4y =Max (555 7y)

Further, let for each couple of integers my =1, n, =1, n, % n, the
derivate @, of the function

(6) D= D (ny, ny, ) = f(ny, T) — f(ng, ) (Mg F my)

be # 0 and either a non-increasing, or a non-decreasing function of x in
0z 1.

Then put
7 A(M,N)= Mz“v "M 1 1
( ( N =M+2 n, ZM—+ 1 ax <¢; (np Ng, 0) ’ 45;, ("1’ Mg, l))

for all integers M = 0 and N = 1.

Definition 2. Let g(x) denote a periodic function of the class L? in
0=z =1 with period 1 and mean value 0, i.e. %)

(8) g@) ~ 3 aem (=05 o =5 (k= 1),
and put
(9) R,= 3 |aff  (m=0)

k=m+1

%) As the assumption ¢, = { g(x) dz = 0 may be made without loss of generality,
0

we shall put ¢, = 0 for the rest of the paper.
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Theorem 2.

1. Let C,,0C,,Cqy denote suitably chosen absolute constants. Let n,(n)

and 7y(n) denote two positive non-increasing functions of n=1,2,...
such that

(10 Y <oy J1IE < oo
n=1 n=1

2. Let f(n,z) (n=1,2,...) denote the functions of Definition 1 and
let

(11) " aso,N vz
n=M+1
(12) AMN)SCip(N) (MZ0, N2
3. Let g(x) denote the function of Definition 2 and let
(13) R, = C;ny (m) (m = 1).
Then
.1 X
(14) Lim = 5 g(f(n,2)) = O.
N—oo n=1

1. 4. It is clear that the functions f(n,z) of theorem 1 satisfy the
conditions of theorem 2, for if one ranges the N numbers

fAM + 1, 2), fo(M + 2,2),..., f(M+ N,a2)

in increasing order, the difference between each two consecutive ones is
at least 6, and we find

M+N 1 N 1 1
S faln,2) g po =0
O 1 51 2
- . <2 — < —log 3N.
,,,;2,111 | fo(n1, ) —fz (ns: )| ;;: AN
Hence
M+N M+N 1 M+N 1 9
4, < ; - —— < 5 log3N
n=2MZ|—1 n=§1 fz(n, 0) 'n=2ll/:-1 fz(n, 1) 0
and
AM,N) <3838

1.5. With a different method, which only holds for the case
f(n, ) = A, x, where the 1, are integers satisfying (2), I have proved a
theorem, which is somewhat sharper than Theorem 1, as the inequality
for § |e.|* is replaced by a weaker one. I shall publish those

n=N+1
results elsewhere.
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§2. Some Lemma’s.

2.1. Lemma 1. Let the function

(15) g@ ~ 3 oo (=0 c,—c; k2]

belong to the class L* and put

(16) E,= 3 lalf  (mz0)
and
(17) @ (@, a) f @+tydt  (a>0).
Then
(18) G (@ a) ~ zwo e2ike,
where —
(19) 0, =222k, k<o),
(20) OZQ |Ci|* = R,,
(21) A 5wz, Slals 5,

whereas the relation

(22) Gz a)= 5 Cenie

k=—00
holds uniformly in zx.

Remark. The condition g(x) € L? is not required for the proof of
all the statements of the lemma, but a refinement in that direction
would be of no use for our purpose.

Proof. As is proved in textbooks on Fourier-series, ?) any Fourier-
series, whether convergent or not, may be integrated term by term
between any limits; i.e. the sum of the integrals of the separate terms,
is the integral of the function of which the series is the Fourier series.
Now applying this process to the function

o0

g(x + t) Z x e2mlmc eznikt’
integrating with respect to ¢ between the limits — a and a, we immediately
find (22) and (19). We now shall prove the formula (21), from which it

is immediately clear that (22) holds uniformly in z.

) E.g.cf.E.C. TircamarsH, The theory of functions, Oxford Univ. Press, (1939).
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From (19) we have for p =0, ¢ =1

pta 1 p+a rta 1\Ys
&= a 2)'/a o
k=§+1|0k| - 2"“1kz lckl = 27a (k=§+1|ck| ) (ké-; kz) ’
using the CAUCHY—SCHWARZ—RIEMANN-inequality; hence
) VF
72:1 ICkI = Zna V— R, < _o
and, if p = 1:
2 T du 1 R
<-—RHh N =1/
k=p+1|ok| - 27! By (.! ’) 2n /;’

which proves (21).

Now from the fact that (22) holds uniformly in  we deduce immediately
that the right hand side is the Fourier series of its sum, which proves (18).
Finally we note that (20) is an immediate consequence of (16) and (19)
because of

sin 2 nka

2 nka =1

Lemma 2. If g(x) € L? and G(x, a) (a > 0) denote the functions of
(15) and (17) and if R, is defined by (16) (m = 0), we have

(23) jl'|g(x)—G(x, a)|*dz < 100 Ry m* o+ 8 R,
0

for each integer m = 1 which satisfies
2ama < 1.

Proof. By Lemma 1 we have (see (15) and (18))
g(x)—GQ(z, a) ~ io (c,—C) €22,
k= —o00 .

hence

[o <] . 2 k .
g(z)—G (z, a) fek:Z_wc,, (1 — 8“2‘”’:; “) ganiks

by (19). Now, since g(z) and G(z, a) belong to L?(G(z, a) being a con-
tinuous function of z), we have, by PARSEVAL’s theorem,

2 nka
—9 z |ck|z(1_sm2nka) +2 z |ckl ( su;i}:zaka)2.

Now we note that

f|9(x)—G(x, a)[2dx = 2 ozo |c |2 (1__ Sin2nka)2 _
(24) 2

IA
'S

(1 _ sin 2 :rzka)2
2 nka
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and also that

1 sin 2 ytka)2 - (2 nka)t (6,5)* m* at
( T 2nka /] = (312 62

< 100 m* a?,

f1<k<m,and 2ama < 1.
Therefore we have by (24)

[19(2)—6(x, a)fde < 100miat 3 [ol2+8 5 |eff <
(1] k=1 k=m+1
<100 m* o' Ry + 8 R,
Q.e. d.

Lemma 3. Let f(n,z) for n=1,2,... denote a real continuous
function of x for a < x = b, and let
Q(nli Ny, x) = f(nI’ x) - f(nZ’ x) for My F Ny
have a continuous derivative @, which is # 0 and either non-decreasing
or non-increasing for a < x < b.
Finally, put

| R ] 1 1
ANzﬁ > > Max )

n=2ny=1 (¢:’t (nl’ Ng, a’) ’ ¢; (”’17 Ny, b)

Then we have for N = 2, h > 0 (h not depending on n and x)
b N . Ay
[] 3 erittna|2dy < (b—a) N + o N2.
a n=1

This lemma I have proved in a previous paper.®) I deduce from it
the following

Lemma 4. Let f(n,z) for n=1,2,... denote the functions of
Definition 1, and let A (M, N) be defined by (7). Then for each integer
h £ 0 which does not depend on n and x we have

O Sy it

M+N
| i ezl |2 g < N - ‘Lﬂ‘}[;ﬂ Ne. (M =0, N =1).
n=M+1

Proof. For M = 0 consider the sequence
M+ 1, 2), (M+2,2),...

These functions satisfy the conditions of Lemma 3 with f(M + n, z)
in stead of f(n,x) and with a= 0, b= 1. The corresponding number
Ay defined in Lemma 3 (a= 0, b= 1) is identical with the number
A (M, N) which was defined by (7). Therefore Lemma 4 is an immediate
consequence of Lemma 3.

Lemma 5. Let f(n,z) for n=1,2,... denote the functions of

8) J. F. KoxksMa, Ein mengentheoretischer Satz iiber die Gleichverteilung
modulo Eins. Comp. Math. 2, 250 —258 (1935).
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Definition 1, let g(x) denote the function of Definition 2, let G(x, a) (a > 0)
denote the function which is defined by (17) and finally, let

M+N
(25) S(M,N,z;a) = > G(f(n,z),a)

n=M+1

Then for each integer p =1

f|S(M, N,z;atdzs < 4 R, Np+ 8 Ry N* A (M, N) log 3p +
(26)

+ o B RoRD+ B VR° * A (M, N)log 3p + —; N2 Bo,

ﬂ’(:t2 P
where A (M, N) and R, are defined by (7) and (9) (Definition 1 and 2).
Proof. Using Lemma 1, we deduce from (22) and (25)

M+N M+N )
S(M,N,z;a)= z C, e¥ikin) — Z O > e2ikfna)_
n=M+1 k= —o00 k=—00 n=M-+1

Hence
) M+N )
|S(M,N,z;a)| <2 5 |C]| > eimd| <
k=1 n=M+1
? M+N . o0
=2> |0k|| S et | L o N S |Cy
k=1 n=M+1 k=p+1

(p = 1), as the inner sum is in absolute value < N.
Therefore we have

) M+N .
|S(M, N, z;a < 4( 2 |C|| > a2
k=1 n=M=1
? M+N . )
+8N( ICIc (2 [Cel| 3 e o)+ aN2( 3 |Cyl)?
k=1 n=M+1 k=p+1
and applying the CAUCHY—SCHWARz—RIEMANN-inequality
D :J M+N
|S(M,N,z;0)P=4( 2 |G (2| 3 eHmap)4
k=1 k=1 n=M+1
(o] D M+N . 00
+8N( 3 |C)( 2 |Cel| 2 eF*nay+ aN2( 5 |Ci])*
k=p+1 k=1 n=M+1 k=p+1

~ Integrating this and applying (20) and (21) we find:

¢ » 1 MiN
JIS(M,N,z;a)pde < 4R, 5 [| > eritina|2dy |
0 E=10 n=M+1

(27) —
4N 'R, 2 1 M+N S N2 R
+a ) E oI a5

Now we have, by Lemma 4,

N
j‘ | i eznikl(n.z) |2 dx é N+ 4 (J‘Z’ N) N2,
0

n=M+1
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Moreover applying the CAaucHY-SCHWARZ-RIEMANN-inequality for
integrals, we find

1 M+N 1 1 M+N .
[ emitmad| dy < ([12da)t- (J| > e2mibioa)|2 dg)th
0 n=M+1 0 0 n=M+1
by MinkowskKI’s inequality. Therefore it follows from (27)
FIS(M, N, 2;0)pPde < 4B, 5 (v 2800 Jys)
0 k=1 k
R, 2 A(M N) R
+20 % 3 o (VA + N | )+ A B
and hence, by (21), since
) 2 1\ —
2 -
2ol =S o (5 5)" <2VR Viog3p,
we have
[1S(M, N, ;a)Pdw < 4B, Np+ 8R, N* A (M, N) log 3p -+
0
N R, N R,
R B SNy p ) By IO ) Viog 35 + s 2,

which proves (26).

- Lemma 6. Let 2 (x) = 0 denote a periodic function with period 1,
which is Lebesgue-integrable. Let y(x) denote a differentiable function in
(0,1), such that y'(x) is a positive and either a mon-increasing, or & non-
decreasing function of z in (0, 1). Put

TS B
(28) A_Max(w,(),w,(l,l).
Then we have
(29) [2@@)dz <8A[2) du.
0 0

Proof. If ¥(u) denotes the inverse function of u = y(x), we have

(30) j!) Yz =T @ (u) ¥’ (u) du.
»(0)
We now distinguish two cases.
A. If
p(1)—y(0) =8,
then the right hand side of (30) is
(1)

<A Q@) du=<84]0 ®u)dy,

y(0) 0
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because of (28) and the fact that £ = 0 is periodiec. In this case therefore
(29) has been proved already.
B. If

v (1) — v (0) > 8,
then we write (30) in the form

{2 (p(a) da =§A"II.Q () ¥’ (u) du+
(31)

w(1)

+ f».Q(u) P w)dut | Q) P () du,

where we have put
=[p(0]+2 , B=[yp(1)]-3.

Now by the same argument as we have used in 4, we have

(32) f:)!)(u) W (u) du < 34 [ 2 (u) du,
w( [}
(33) T Q) ¥ (w)dn < 4 A [ 2 (u) du.

We now deal with the sum on the right hand side of (31) and write

ZJWQMWWMﬁh—ZI9w+WW%%+ﬂ

v=4 v
+1 1
== j(; 2 («v) {’ZA Y (v+»)}dv < {EAY” (»} _L.Q(fv) dv,
since ¥'(u) is either non-increasing of non-decreasing. Now
OS] Y <] ¥ wdu=[PES=1,
v=4

and therefore

v

1

B
(34) 2

e+

Qu) ¥'(u) du < i Q(u) du.
Combining (31), (32), (33), (34), we find

[ O(w(e )dz<8Aj.Qu)du,
V]

Q.e.d.
because of 4 = 1.

Lemma 7. If f(n,x) (n=1,2,...) and g(x) denote the functions of
Definition 1 and Definition 2, and if we put

(35) SN0 ="3 g(fma),



969

where M = 0, N = 1 are integers, we have for every positive a, and every
positive integer m, satisfying 2xma =1 and for every positive integer
p the inequality

(}18*(M, N, ) [pda < {(100 Rymict +- 8RN 5 8(A,+ 1))+
0 n=M+1
(36) (+{4RNp+ 8R,N2A(M,N)log3p +

) e S Bl 4 21, ) og 3p + 2 2|,

na? n?a® p
using the notations of Definitions 1, 2.

Proof. If G(x,a) (a > 0) is defined by (17) and if S (M, N, z, a)
denotes the sum (25), we find from (35) by MINKOWSKI's inequality

(118 (M, N, 2) |2 day < (18* (M, N, 2)—S(M,N 3 0) | da}'s+
(37) 0 0 1
+{[|S(M,N,z;a)2dz}"

Now by (25) and (35)

§18* (M, N,2) — S (M,N,z; a) |2 dw —
0

M+N

(38) zofl > (g(f(n,2)) — G (f(n,2),0)) P de <

n=M+1

M+N
<N S TlgUna) — 6 (n,2), ) d

n=M+N

using the CAucHY-ScHWARzZ-RIEMANN-inequality for sums. Applying
Lemma 6 with

Q (x) = |g(x) — G(z, ) .  (x) = f(n, 2),
we find

Fl9(/ (0,2)—6 (f(n,2),0) [ de = 8(At 1) [ |9 () — G (w, ) |2,

where A, is defined by (5). Therefore we have by Lemma 2

1

[lg(f(m,2)) — G (f(n,2),a)|* dz < 8(4,+1) (100 Rym* a* + 8 R,)

tor every integer m = 1 which satisfies 2 7 m a < 1. Therefore we have
by (38)

[ 18*(M,N,2)—S (M, N,z; )P do < (100 Rymic*+8R,)N > 8(d,+1)
(1]
and thus we find from (37)

\ (1%, ¥, ) o} = (100 Rymtat £+ 8RN 'S 8(4,+ 1Y+
(39) ’ n=M+1

) S {[IS(M,N,z; o) |2 da}h,
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Now applying Lemma 5 (p = 1), we find from (39) and (26) immediately
(36), which proves Lemma 7.

Lemma 8. Be 5 (x) > 0 and non-increasing for x = 1, such that

40 2 <
N=1

Then we have for any positive e

v n()
() D Tt <o
N-1
and also
(42) 7n(N)log N -0, as N — oo.

Proof. A. It is clear that "(le) is a non-increasing function of N

and therefore

n (¢ d
e { converges.

He—38

2"—%\]2 < oo, if
N=1

Now putting # = u, we find ﬂ = sl du, hence

u

T d
f"(:")dt=-:—f—(— u,
1 1

o]

which proves the first assertion, since 2 igvﬂ < oo,
N=1

o]
B. As n(N)/N is non-increasing and as 2 % < oo, we conclude
N=1
from a well known theorem that also the series

nzl 7(2") < oco.
Since the general term of this series is a non-increasing function of =,
we have by another well known theorem
nn(2*)— 0, as n — oo.
Now let N denote a positive integer > 2 and be n the integer for which
2" < N < 2¢HL,
Then we have

7 (N)log N <5 (2") (n+ 1)log 2 > 0 as N — oo.
Q.e.d.
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Lemma 9. Let n,(N) and n,(N) be positive non-increasing functions

such that
Sagcc Suphce
N=1

N=1

Then V5, (N) 75(N) is also a non-increasing function of N, such that

P TIIENLINS
N=1

Proof. It is trivial that }/5,(N)7y(N) is a non-increasing function.
Further by the CaAucHY-ScHWARZ-RIEMANN-inequality

N* V N* (N) N*k (N)
(N) 7, (N) M \LY) N2 V)
2——17' Nn( = 2 o 2 N
N=1 N=1 N=1

which proves the lemma.

Finally we use a lemma, which is a special case of a theorem due to
I. S. GAL and the author ?), and which has also been proved in a joint
paper by R. SALEM and the author: 19)

Lemma 10. Let f,(x) e L?(0,1)(n=1,2,...) (p> 1) be a sequence
of functions such that

1 M4N
Il fa (@) P de < C(M + N)*=° N° 5 (N),
0 n=M+1
where C > 0, 0 > 1 are constants and where n(N) denotes a positive non-
increasing function of N such that > n(N)/N < oo.
Then

N
> fu(x) >0, as N—>(c0),

o=
almost everywhere in (0, 1).

§ 3. Proof of Theorem 2,
We put (N = 1)

(43) a m =[N, p=[NH.

1

~ 2aNL’

%) I.8S.GAr and J. F. Koksma, Sur I'ordre de grandeur des fonctions sommables.
These Proc. 53, 638 —653 (1950) = Indag. Math. 12, Fasc. 3 (1950).

10) J. F. KoksMA and R. SALEM, Uniform distribution and Lebesgue integration,
Acta Sci. Math. Szeged. 12B, 87—96 (1950).

The main theorem of this joint paper is closely related with the above theorems,
as it deals with the problem, whether from the uniform distribution modulo 1 of a
sequence u;, Uy, ..., may be concluded that

A 1 N 1
Lim & 3 g(u,+2) = [ g() do
N—oo n=1 0

for a given g(z) € L? and for almost all .
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Then m =1, p=1, 2ama < 1.
Further we have by (13)

(44) R,, =0 (nz(m)) = O (3 (N'")),
(45) R, =0 (ny(p)) =0 (2 (N')),

as 7,(n) is non-increasing.
We now apply Lemma 7. Substituting (43), (44), (45), (11), (12) in
(36) we find

(J18* (L, I, ) da}'s = O (N + N2y (W0} +

+ O ({W' N2 3 (N) log 3N + N* [/ (NF)+ N oy, (N 7 (N) log 3N
+ Ny (N)}),
Hence using MINKOWSKI's inequality and applying Lemma 8, i.e.
7, (W) log 3N -0 and n, (N) > 0, 7, (N') >0,
we find

(J18* (L, N, )| dar}'h = O (N4 N Yy (V) + N Yy ().
Hence by Lemma 9
[ 18% (M, N, )2 dz = O (W2 (),

where n(N) is a positive non-increasing function such that

E'n(N)
—— < 00,
e N

Therefore by Lemma 10 and (35)

8* (0, N,x) =0(N)
Q.e.d.

almost everywhere in 0 =<z < 1.



