COMPACT SPACES WITH A LOCAL STRUCTURE DETERMINED BY THE GROUP OF SIMILARITY TRANSFORMATIONS IN Eⁿ

BY

N. H. KUIPER

(Communicated by Prof. W. VAN DER WOUDE at the meeting of June 24, 1950)

§ 1. The problem.

The spaces X we want to consider are n-dimensional manifolds with a local structure which we shall define with the help of the similarity space Es^n as a fixed reference space. Es^n is the Euclidean n-dimensional space assigned with the group I of similarity transformations ("similarities") i.e. the group generated by the Euclidean motions and the geometrical multiplications.

A reference system is a topological mapping φ of a (open) domain V in X onto a domain $\varphi(V)$ in Es^n . It carries the local structure (e.g. angles, straight lines) of Es^n in V. Two reference systems (φ, V) and (ψ, W) are said to agree, if for every component U of the intersection $V \cap W$, the topological mapping $\psi \varphi^{-1} : \varphi U \to \psi U$ is a similarity in Es^n . If all reference systems of a set agree mutually, then they determine a unique local structure in the covered pointset of X. The set is then called a set of preferred reference systems. Any additional reference system is preferred if it agrees with all others. A set of preferred reference systems, covering X, is called complete if it contains any reference system that agrees with it. We now define: An n-dimensional manifold X is called (locally) $sim\ E^{-1}$), if it is covered by a complete set of preferred reference systems, the reference being with respect to Es^n .

Our problem is analogous to the space problem of CLIFFORD—KLEIN ([2], [4]) and consists in the examination of all compact (= X is covered by a finite subset of any set of neighbourhoods that cover X.) connected locally sim E spaces X. The results are stated in the theorem at the end of the paper.

§ 2. Preliminaries.

If X is sim E and connected, then so is the universal covering space \tilde{X} of X. It is well known that in \tilde{X} a discrete group of topological transformations without fixed point, the covering group D, operates. Any $d \in D$ leaves the sim E structure of $\tilde{X}(!)$ invariant. A point of X can be

¹⁾ In a theory of spaces with generalised displacements, the name "similarity-flat" would be appropriate.

considered as a point set $D\tilde{x}(\tilde{x} \in \tilde{X})$ of \tilde{X} . D is isomorphic to the fundamental or Poincaré group of X.

For simply connected sim E spaces, e.g. \tilde{X} , the following theorem holds.

Lemma 1. If \tilde{X} is simply connected and sim E, then a mapping $\phi: \tilde{X} \to \tilde{X}^* \subset Es^n$ exists, such that any point $\tilde{x} \in \tilde{X}$ has a neighborhood $N(\tilde{x})$ for which $(\phi, N(\tilde{x}))$ is a preferred reference system. Any two such mappings ϕ , ψ obey a relation $\phi = g \cdot \psi$, where $g \in I$ is a similarity.

We omit the proof of this lemma which is a consequence of an analogous theorem on conformally flat spaces (Kuiper [5], th. 4; analogous theorems with analogous proofs hold for a large class of spaces, the locally homogeneous spaces [3], [7]).

If ϕ is fixed according to lemma 1, and $d \in D$, then ϕd is another mapping with the same properties as ϕ . Hence $d^* \in I$ exists such that $\phi d = d^* \phi$ (lemma 1). It is easily seen that the correspondence $d \to d^*$ is a homomorphism of D onto a subgroup $D^* \subset I$. If $\phi: \tilde{X} \to \tilde{X}^*$ is topological then D and D^* are isomorphic.

From now on X denotes a compact connected sim E space. X then admits a finite triangulation, and this yields in the natural way a triangulation of \tilde{X} . It is possible to choose an open fundamental domain F in \tilde{X} , composed of simplices of the triangulation, with the following properties: The covering mapping $f: \tilde{X} \to X$, restricted to F, is topological $f: F \longleftrightarrow f(F) \subset C X$; $f(\overline{F}) = X$ (\overline{F} is the closure in \tilde{X} of F); the boundary $\overline{F} - F$, as well as its image $f(\overline{F} - F)$ is the union of a finite number of closed n-1-dimensional simplices, called faces: If d_1 and d_2 are different elements of the covering group D, carrying F onto the fundamental domains $d_1(F)$ and $d_2(F)$ respectively, then $d_1(F) \cap d_2(F)$ is void: However the union of all $d(\overline{F})$ for $d \in D$ is \tilde{X} . From now on F denotes a fixed fundamental domain, and φ or (*) a fixed mapping according to lemma 1.

§ 3. ϕ has no boundary points.

Definition: A boundary point of $\phi: \tilde{X} \to \tilde{X}^* \subset Es^n$ is the end point $\phi(0)$ of a continuous curve $\phi(t)$, $0 \le t \le 1$, in Es^n with the property: There exists a curve $\tilde{x}(t) \subset \tilde{X}$ such that $\phi(\tilde{x}(t)) = \tilde{x}^*(t) = \phi(t)$ for $0 < t \le 1$; there does not exist a point $\tilde{x}(0) \subset \tilde{X}$, such that moreover $\tilde{x}(t)$ is a continuous curve for $0 \le t \le 1$.

If ϕ has no boundary points then: $\tilde{X}^* = Es^n$; (ϕ, \tilde{X}) is a covering-space (in the topological sense) of $\tilde{X}^* = Es^n$; and as Es^n is simplyconnected, ϕ is a topological mapping and D and D^* are isomorphic. Suppose $d^* \in D^*$ is a similarity transformation which is not a Euclidean motion. Then d^* has a "factor of multiplication of distances" f < 1 (if f > 1, we take $(d^*)^{-1}$), and an invariant point, say A, in Es^n . Let $d \in D$ correspond

with d^* under the isomorphism $D \longleftrightarrow D^*$; Let $\tilde{x}(t)$, $f \le t \le 1$, be a continuous curve with endpoints $\tilde{x}(1)$ and $\tilde{x}(f) = d \tilde{x}(1)$. Finally let $\tilde{x}(t)$, $0 < t \le 1$, be defined by

$$\tilde{x}(t) = d^k \cdot \tilde{x}(f^{-k} \cdot t)$$
 for $f^{k+1} \leq t \leq f^k$, $k = 1, 2, ...$

Then $\lim_{t\to 0} \phi(\tilde{x}(t)) = A$ is a boundary point in contradiction with the assumptions. Hence D^* contains only motions. Therefore it is possible to introduce a locally Euclidean metric in X, and we have:

Lemma 2. If X is compact and $\sin E$, and $\phi: \tilde{X} \leftarrow \tilde{X}^*$ has no boundary points, then ϕ is topological, and X can be considered as a compact locally Euclidean space of which only the local $\sin E$ structure is taken into account.

§ 4. Boundary points of Φ .

Let B be a boundary point of $\phi: \tilde{X} \to \tilde{X}^* \subset Es^n$, defined by $\tilde{x}(t)$ and $\phi(\tilde{x}(t)) = \phi(t)$, $0 < t \le 1$, as above. Suppose $\tilde{x}(t)$ meets for t running from 1 to 0 successively the closed fundamental domains $d_{\nu}(\overline{F})$, $\nu = 1, 2, \ldots$ If this were only a finite number of pointsets, with a compact sum (!), then a point $\tilde{x}_0 \in \tilde{X}$ would exist, in any neighborhood of which points $\tilde{x}(t)$, $t < \varepsilon$, $\varepsilon > 0$ and arbitrary, would occur. The inverse of the topological mapping ϕ of some neighborhood of \tilde{x}_0 in Es^n , then would show that B is not a boundary point with respect to $\tilde{x}(t)$. Contradiction. Hence $\tilde{x}(t)$ meets an infinite number of closed fundamental domains $d_{\nu}(\overline{F})$. Also if $\varepsilon > 0$, then a number $N(\varepsilon)$ exists, and $\tilde{x}(t)$ respectively $\phi(t)$, $t < \varepsilon$, does meet the pointset $d_{\nu}(\overline{F} - F)$ respectively $\phi(t)$, $t < \varepsilon$, does for all $v > N(\varepsilon)$.

Similarities g of which the factor of multiplication of distances, denoted by |g|, is bounded: 0 , <math>p, q constants, form a compact subset of the group space I. Hence if the factors $|d_{\nu_{\mu}}^*|$ are bounded in this way, then some subsequence $d_{\nu(\mu)}^*$ of d_{ν}^* will converge to a similarity say d^* . If μ is large, then $d_{\nu(\mu)}^*$ transforms some point of $\phi(\overline{F}) = \overline{F}^*$ into a point close to B. Without restriction we may then assume F to be such that B lies in the interior of $d^*(F^*)$. This implies that B has a neighborhood which does not contain any of the points of $d_{\nu(\mu)}^*(\overline{F}^* - F^*)$ for μ sufficiently large; in contradiction with (1).

Because the factors $|d_{\nu}^{*}|$ are not bounded, a subsequence $d_{\nu(\mu)}$ of d_{ν} will exist for which $\lim_{\mu\to\infty}|d_{\nu(\mu)}^{*}|=\infty$ or =0. In the first case $\lim_{\mu\to\infty}|d_{\nu(\mu)}^{*}|^{-1}|=0$. If μ is large, then $(d_{\nu(\mu)}^{*})^{-1}$ transforms some point very near to B (in the intersection of $\phi(t)$ and $d_{\nu(\mu)}^{*}\overline{F}(!)$) into \overline{F}^{*} . Because moreover $|(d_{\nu(\mu)}^{*})^{-1}|$ is very small, $(d_{\nu(\mu)}^{*})^{-1}$. $\phi(t)$ will prove to have a limit point for $t\to 0$, which is not a boundary point with respect to $(d_{\nu(\mu)}^{*})^{-1}\cdot \tilde{x}(t)$. But then $\lim_{t\to 0} \phi(t) = B$ is not a boundary point with respect to $\tilde{x}(t)$ either.

Finally we come to the conclusion that d_{ν}^* contains a subsequence $d_{\nu(\mu)}^*$,

with factors, that tend to zero. Because moreover the pointsets $d_r^*(F^*)$ contain points that tend to B, the invariant points of the similarities $d_{r(n)}^*$ also tend to B. This proves

Lemma 3. If B is a boundary point, N(B) a neighborhood of B, U a bounded pointset in Es^n , then D^* contains an element d^* , such that $d^*(U) \subset N(B)$.

§ 5. The set of boundary points.

Lemma 4. Let V be a closed subset of the Euclidean space E^n , not contained in any E^{n-1} ; $n \ge 0$. Let G be a subgroup of the similarity group operating in E^n , such that for any $g \in G : gV = V$.

Moreover suppose that for any point B with neighborhood N(B) in V and any bounded pointset U in E^n , there exists an element $g \in G$ such that $g \cdot U \subset N(B)$.

Then $V = E^n$.

(Roughly: small parts of V are similar to large parts).

Proof:

The lemma is trivial for n = 0. We suppose n > 0.

First we agree that any neighborhood under consideration will be the interior of a hyper sphere. Let U(A) and $N(A) \subset U(A)$ $(N(A) \neq U(A))$ be neighborhoods of the point $A \in V$. Let $g \in G$ be such that $g \cdot N(A) \subset G \cdot U(A) \subset N(A)$. Straightforward geometrical consideration as well as the Brouwer fixed point theorem then show that N(A) contains a point A^* invariant under g. Let the factor of multiplication of distances of g be |g| < 1. The set of points $g^m \cdot A$ (m = 1, 2, ...) all belonging to the closed set V, converges to A^* , which therefore also belongs to V.

Let |g| also denote the geometrical multiplication with centre A^* and with the same factor of multiplication of distances as g. $h = g \cdot |g|^{-1}$ is then a rotation about A^* . Suppose the point $B \neq A$ is in $V \cap U(A)$. The set of points $h^m B(m = 1, 2, ...)$ has at least one limit point on the hypersphere with centre A^* and radius = distance (A^*, B) . Therefore if $\varepsilon > 0$, integers m_1 and $m_2 = m_1 + m > m_1$ exist, for which

angle $(h^{m_1} B, A^*, h^{m_2} B)$ = angle $(B, A^*, h^m B)$ = angle $(B, A^*, g^m B) < \varepsilon$. Because $g^m \cdot B = C$ is a point of V as well as of N(A) we have:

Statement 1. If A and B are different points in V, N(A) is a neighborhood of A, $\varepsilon > 0$, then there exist points A^* and C in $V \cap N(A)$, for which angle $(B, A^*, C) < \varepsilon$.

This statement allows us to verify:

Statement 2. There exists a set of points $A_1, A_2^*, A_3^*, \ldots, A_{n+1}^*$, R, all in V, such that R is interior point of the nondegenerated simplex (Euclidean, not only topological) with the other points as vertices.

The existence of n+1 points $A_1, A_2, \ldots, A_{n+1}$ in V, but not in any E^{n-1} , follows from the conditions in the lemma. We replace A_2 by two

points A_2^* and C_1 both in V, near to A_2 and such that the angle (A_1, A_2^*, C_1) is so small that C_1 lies on the same side of the hyperplanes spanned by A_2^* , A_3 , A_4 , ..., A_{n+1} and by A_1 , A_3 , ..., A_{n+1} as the inside of the simplex with vertices A_1 , A_2^* , A_3 , ..., A_{n+1} does. Statement 1 allows this choice.

In the next step we replace A_3 and C_1 by two points A_3^* and C_2 in V, near to A_3 , and such that C_2 lies on the same side of the hyperplanes $(A_2^*, A_3^*, A_4, \ldots, A_{n+1})$, $(A_1, A_3^*, A_4, \ldots, A_{n+1})$ and $(A_1, A_2^*, A_4, \ldots, A_{n+1})$ as the inside of the simplex $(A_1, A_2^*, A_3^*, A_4, \ldots, A_{n+1})$. Statement 1 allows this choice.

Continuing with analogous steps we finally obtain the required set of points $A_1, A_2^*, A_3^*, \ldots, A_{n+1}^*$ and $C_n = R$.

Let $C(T, \psi)$ be a solid hypercone in E^n , that is the locus of halflines which in their fixed endpoint T meet one of these half lines under angles $\leq \psi < \pi/2$. Let us denote the part of a $C(T, \psi)$ which is between or in two concentric hyper spheres with centre T and radii r and $r \cdot f(r > 0, 0 < f \leq 1)$ by $CS(T, \psi, f)$. Then we are able to formulate:

Statement 3. There exists a point $R \in V$, an angle $\psi < \pi/2$ and a number f > 0, such that any $CS(R, \psi, f)$ contains at least one point of V.

Consider a configuration $A_1, A_2, \ldots, A_{n+1}, R$ of points in V, for which R lies in the interior of the simplex A_1, \ldots, A_{n+1} . Then there exists a number $\psi < \pi/2$, such that any solid cone $C(R, \psi)$ contains at least one of the points A_1, \ldots, A_{n+1} . Even ψ can be choosen such that the same is true if we replace R by any point in a sufficiently small neighborhood N(R) of R. So we do. Now let $g \in G$ transform a large neighborhood U(R) of R onto $g \cdot U(R) \subset N(R)$. g has an invariant point in $N(R) \cap V$. Without restriction we may assume that this point is R. Let |g| < 1 be the factor of multiplication of distances of g, and let $p \leq 1$ be the ratio of the minimum and the maximum of the distances $(A_1, R), (A_2, R), \ldots, (A_{n+1}, R)$. Then the property of statement 3 holds for any

$$CS(R, \psi, f) = CS(R, \psi, |g| \cdot p/2)$$

(Consider the set of points $g^m A_i \subset V$; m = 1, ...; i = 1, ..., n + 1.)

Statement 4. If SS is a solid hyper sphere in E^n , $\psi < \pi/2$, $0 < f \le 1$, then for any point P sufficiently near to SS, there exists a $CS(P, \psi, f)$ which is completely contained in the interior of SS.

This follows immediately from the analogous statement for the Euclidean plane E^2 .

Assumption. Now suppose $V \neq E^n$. Then because V is closed, there exists a solid sphere SS in E^n , the inside of which has no point in common with V, but the boundary of which intersects V in at least one point T. (V is not void by assumption!). There exists a transformation $h \in G$, which transforms the point R of statement 3 into a point so near to the point T of the boundary of SS, that there exists a $CS(hR, \psi, f)$ completely contained in the interior of SS (Conditions in the lemma; statement 4;

 ψ and f are the constants obtained in the proof of statement 3). That particular $CS(hR, \psi, f)$ does not contain any point of V, because the interior of SS does not. On the other hand h is a $1 \longleftrightarrow 1$ similarity transformation which transforms all $CS(R, \psi, f)$ onto all $CS(hR, \psi, f)$ and which leaves V invariant. Because all $CS(R, \psi, f)$ did contain points of V, so do all $CS(hR, \psi, f)$. Hence the assumption leads to a contradiction, and $V = E^n$ q.e.d.

As a corollary of lemma 4 we have

Lemma 5.

Let V be a closed subset of E^n ; $n \ge 0$. Let G be a subgroup of the similarity group operating in E^n , and for any $g \in G : gV = V$. Moreover suppose that for any point B in V with neighborhood N(B) and any bounded pointset U in E^n , there exists a $g \in G$ for which $g \cdot U \subset N(B)$. Then $V = E^m$, $m = -1, 0, 1, \ldots$, or n.

Proof: Apply lemma 4 to the linear space E^m of smallest dimension which contains V.

Lemma 5 can be applied to our problem: The closure of the set of boundary points in Es^n of the fixed mapping ϕ , is invariant under the similarity transformations $d^* \in D^*$, operating in Es^n . Lemma 3 presents the other necessary conditions for application of lemma 5. Hence:

Lemma 6. The closure of the set of boundary points in Es^n , under the fixed mapping $\phi: \tilde{X} \to \tilde{X}^*$, is a linear space E^m , $m = -1, 0, 1, \ldots, n$.

§ 6. The set of boundary points. Continued.

Assumption 1. In lemma 6 is the number m = n.

Let A be the invariant point of the similarity $a \in D^*$ with factor of multiplication of distances |a| < 1. Let $\tilde{x}^* \in \tilde{X}^*$ and let the pointset $\phi^{-1}(\tilde{x}^*)$ consist of the points $\tilde{x}_{\lambda}(\lambda = 1, 2, \ldots)$. Let, under the homomorphism $D \to D^*$, d correspond with a. As in § 3 we construct with each point \tilde{x}_{λ} as initial point $\tilde{x}_{\lambda}(1)$, a continuous curve $\tilde{x}_{\lambda}(t)$ ($0 < t \le 1$) for which $\lim_{t\to 0} \phi(\tilde{x}_{\lambda}(t)) = A$ is a boundary point! From that it follows that $\phi^{-1}(A)$ is void. The set of invariant points like A is dense in E^n (consequence of assumption 1). Assumption 1 leads to the contradiction: \tilde{X}^* is void.

Assumption 2: In lemma 6: 0 < m < n.

Let A and B be two different invariant points of similarities a and b respectively; $a,b\in D^*$, |a|<1, |b|<1. Consider the set of numbers $|a|^{r_*}|b|^s$ ($r\neq 0$, $s\neq 0$ integers). This set has the number 1 as a limit point. Therefore a sequence $c_r=a^{r_r}b^{s_r}\in D^*$ exists for which $\lim_{r\to\infty}|c_r|=1$. From the activity of c_r on the point B we deduce that the set $(c_r)^{\mu}(r)=1$ and $(c_r)^{\mu}(r)=1$ integer $(c_r)^{\mu}(r)=1$ as an accumulation point.

Let ε be a small positive number. We determine a number $N = N(\varepsilon)$

so large that for any rotation r in a centered Euclidean vector space of dimension n and a vector \overrightarrow{v} , the angle between \overrightarrow{v} and at least one of the vectors $\overrightarrow{r}^{\mu} \overrightarrow{v}$, $0 < \mu < N$, is smaller then ε . This is possible because the sphere of unit vectors is compact and has an invariant measure (angle).

$$1-\varepsilon < |c^{\mu}| = |a^{\nu}c^{\mu}a^{-\nu}| < 1+\varepsilon$$
 for all $0 < \mu < N$, ν integer.

We denote the set of boundary points of ϕ by $E^m \cdot A$, $B \in E^m$. Let the line (P^*, A) be perpendicular to E^m , and let $P \in \tilde{X}$, $\phi(P) = P^* \in \tilde{X}^*$. The points $(a^{\nu} c^{\mu} a^{-\nu}) A$ are different from A, though for $\nu \to \infty$ they converge to A. There exists a value $\nu = p$, so that the distance $(A - (a^p c^{\mu} a^{-p})A)$ is smaller then ε for $0 < \mu < N$. Idem for any $\nu < p$.

The points $(a^p c^{\mu} a^{-p}) P^* (0 < \mu < N)$ are contained in the linear space of dimension n-m perpendicular to E^m in the point $(a^p c^{\mu} a^{-p})A$.

The angle between the line $\{A \to P^*\}$ and the line

Next we choose $c = a^r \cdot b^s$ obeying (c exists!)

$$\{(a^p c^\mu a^{-p})A \to (a^p c^\mu a^{-p})P^*\}$$

is, for a particular choice: $\mu = u$, smaller then ε (see above).

Because ε was arbitrary, it now follows (elementary) that any neighborhood $N(P^*)$ of P^* contains points d^*P^* ($d^* \in D^*$) different from P^* and equivalent with P^* .

If 0 < m < n-2 or m=n-1, then \tilde{X}^* determined by E^m is simply connected and the mapping $\varphi: \tilde{X} \to \tilde{X}^*$ is topological. The points acquivalent with P^* under the covering group cannot converge to P^* in this case. Contradiction.

If m=n-2, then ϕ is not topological and (ϕ, \tilde{X}) is the universal covering space of \tilde{X}^* . Every point $\tilde{x} \in \tilde{X}$ can be described by the point $\tilde{x}^* = \phi(\tilde{x})$ and an angle of rotation about the E^{n-2} of boundary points. We call the angle: argument. Let under the homomorphism $D \to D^*$: $a \to a, c \to c$. Clearly:

$$arg (a^{\nu} c^{\mu} a^{-\nu}) P = arg c^{\mu} P.$$

The points $(a^{\nu} c^{\mu} a^{-\nu})P$, $\nu < p$, $0 < \mu < N$, are then different and aequivalent under the covering group D in \tilde{X} , and they are contained in a compact bounded set of \tilde{X} . Hence they have a limit point in \tilde{X} : contradiction.

Assumptions 1 and 2 being false, Lemma 6 yields: m = -1 or 0. m = -1 was considered in lemma 2. If m = 0, n > 2, then ϕ is topological; the simplyconnected space \tilde{X}^* can be identified with \tilde{X} . If m = 0, n = 2, then \tilde{X} is the wellknown universal covering space of a plane with exception of a point. If m = 0, n = 1, \tilde{X}^* is a Euclidean half line. (The case m = 0, n > 2 was considered in Kuiper [6] section 5b). We finally state our results in the

Theorem. The universal covering space (with preservation of the sim E structure!) of a compact connected locally sim E space of dimension n > 0 is either the Euclidean space Es^n , or a) for n > 2: the same with exception of one point, b) for n = 2: the universal covering space of the Euclidean plane with exception of one point, c) for n = 1: the Euclidean half line. In the first case the original space is determined (identification) by a (covering-)group of Euclidean transformations (lemma 2). In the second case a) idem by a group generated by a subgroup Ω of rotations about the excluded point and a similarity b (b is not a rotation) with the excluded point as invariant point, and which commutates with Ω : $\Omega b = b\Omega$. In the second case b) we use polar coordinates: (radius, angle) = (r, ω) in the space \tilde{X} . The covering group is generated by two transformations: (1) r' = r, $\omega' = \omega + \text{constant}$ and (2) $r' = K \cdot r$ (0 < K < 1), $\omega' = \omega + \text{constant}$. In the third case c) the covering group is generated by a geometrical multiplication: $r' = K \cdot r$ (0 < K < 1).

Technische Hogeschool, Delft, Holland.

REFERENCES

- [1] S. BOCHNER, On compact complex manifolds. J. Ind. Math. Soc. XI (1947).
- [2] E. CARTAN, Lecons sur la géometrie des espaces de RIEMANN, Chapitre III et VI (Paris, 1946).
- [3] EHRESMANN. C., Sur les espaces localement homogenes. Enseign. Math. 35, 317 – 333 (1936).
- [4] HOFF, H., Zum Clifford-Kleinschen Raumproblem, Math. Annalen 95, 313-340 (1926).
- [5] Kuiper, N. H., On conformally flat spaces in the large. Ann. of Math. 50, 916-924 (1949).
- [6] ———, On compact conformally Euclidean spaces of dimension > 2. Ann. of Math. 51, (1950).
- [7] WHITEHEAD, J. H. C., Locally homogeneous spaces in differential geometry.

 Ann. of Math. 33, (1932).