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§ l. The problem. 

The spaces X we want to consider are n-dimensional manifolds with a 
local structure which we shall define with the help of the similarity space 
Es" as a fixed reference space. Es" is the Euclidean n-dimensional space 
assigned with the group I of similarity transformations ("similarities") 
i.e. the group generated by the Euclidean motions and the geometrical 
multiplications. 

A reference system is a topological mapping cp of a (open) domain V 
in X onto a domain cp( V) in Esn. It carries the local structure (e.g. angles, 
straight lines) of Esn in V. Two reference systems (CP, V) and (V', W) are 
said to agree, if for every component U of the intcrsection V n W, the 
topological mapping V'cp-l : cpU ~ V'U is a similarity in Es". If all reference 
systems of a set agree mutually, then they determine a unique local 
structure in the covered pointset of X. The set is then called a set of 
preferred reference systems. Any additional reference system is preferred 
if it agrees with all others. A set of preferred reference systems, covering 
X, i!l called complete if it contains any reference system that agrees 
with it. We now define: An n-dimensional manifold X is called (lor,ally) 
llim El), if it is covered by a complete set of preferred reference systems, 
the reference being with respect to Es". 

Our problem is analogous to the space problem of CLIFFORD-KLEIN 

([2], [4]) and consists in the examination of all compact (= X is covered 
by a finite subset of any set of neighbourhoods that cover X.) connected 
locally sim E spaces X. The results are stated in the theorem at the end 
of the paper. 

§ 2. Preliminaries. 

If X is sim E and connected, then so is the universal covering space X 
of X. It is weIl known that in X a discrete group of topologie al trans­
formations without fixed point, the co vering group D, operates. Any 

dE D leaves the sim E structure of X(!) invariant. A point of X can be 

1) In a theory of spaces with generalised displacements, the name "similarity. 
flat" would be appropriate. 
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considered as a point set Di(i E X) of X. D is isomorphic to the funda­
mental or POINCARÉ group of X. 

For simply connected sim Espaces, e.g. X, the following theorem 
holds. 

Lemma 1. If X is simply connected and sim E, then a mapping 

cp : X ~ X* CEs" exists, such that any point i E X has a neighborhood 
N(i) for which (~, N(i)) is a preferred reference system. Any two such 
mappings cp, "P obey a relation cp = g. "P, where g E J is a similarity. 

We omit the proof of this lemma which is a consequence of an analogous 
theorem on conformally flat spaces (KUIPER [5], th. 4; analogous theorems 
with analogous proofs hold for ft large c1ass of spaces, the locally homo­
geneous spaces [3], [7]). 

If cp is fixed according to lemma] , ano d E D, then:pd is another mapping 
with the same properties as ~. Hence d* EI exists such that epd = d*cp 
(lemma 1). It is easily seen that the correspondence d ~ d* is a homo-

morphism of D onto a subgroup D* C J. If cp : X ~ it* is topological 
then D and D* are isomorphic. 

From now on X denotes a compact connected sim Espace. X then admits 
a finite triangulation, and this yields in the natural way a triangulation 

of X. It is possible to choose an open lundamental domain F in X, composed 
of simplices of the triangulation, with the following properties : The 

co vering mapping I: X --+ X, restricted to F, is topological I : F ~ I(F) C 

ex; I(F) = X (F is the closure in X of F); the boundary F - F, as 

wen as its image 1(1' - F) is the union of a finite number of c10sed n-l­
dimensional simplices, called faces: If dl and d2 are different elements 
of the covering group D, carrying F onto the fundamental domains 
dl(F) and d2(F) respectively, then d1(F) n d2(F) is void: However the 

union of all d(F) for dE D is X. From now on F denotes a fixed funda­
mental domain, and ~ or (*) a fixed mapping according to lemma 1. 

§ 3. cp has no boundary points. 

Definition: A boundary point of cp : X ~ X* C Es" is the end point 
CP(O) of a continuous curve cp(t), 0 < t < 1, in Es" "'ith the property: 

There exists a curve i(t) C X such that q;(i(t)) = i*(t) = CP(t) for 0 < t ::;: 1; 

there does not exist a point, i(O) ex, such that moreover i(t) is a con­
tinuous curve for 0 < t < 1. 

If cp has no boundary points then: X* = Es"; (~, X) is a covering­

spa ce (in the topologie al sense) of X* = Es"; and as Es" is simplycon­
nected, cp is a topological mapping and D and D* are isomorphic. Suppose 
d* E D* is a similarity transformation which is not a Euclidean motion. 
Then d* has a "factor of multiplication of distances" 1 < 1 (if I> 1, we 
take (d*)-l), and an invariant point, say A, in Es". Let d ED correspond 
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with d· under the isomorphism D+-+D·; Let x(t), I ~ t ~ I, he a con­
tinuous curve with endpoints x(l) and x(f) = d x(I). Finally let x(t), 
o < t < I, be defined by 

x(t)=dk.x(f-k.t) for fk+l<t<lk , k=I,2, ... 

Then liml->o CP(x(t)) = A is a boundary point in contradiction with the 
assumptions. Rence D· contains only motions. Therefore it is possible 
.to introduce a locally Euclidean metric in X, and we have: 

Lemma 2. If X is compact and sim E, and cp : .î -+- X· has no 
boundary pointR, then cp is topological, and X can be considered as a 
compact locally Euclidean space of which only the local sim E structure 
iA taken into account. 

§ 4. Boundary 1)()1:nts ol cp. 
Let B be' a boundary point of cp : X ~ X· CEsft, defined by x(t) and 

CP(x(t)) = CP(t), 0 < t < I, as above. Suppose x(t) meets for t running from 

I to 0 succesRively the closed fundamental domains d.(F), " = 1,2, .... 
If this were only a finite number of pointsets, with a compact sum (!), 

then a point Xo E.î would exist., in any neighborhood of which points 
x(t), t < e, e > 0 and arbitrary, would occur. The inverse ofthe topological 
mapping cp of some neighborhood of Xo in Esft, then would show that B 
is not a, boundary point with respect to x(t). Contradiction. Rence x(t) 

meets an infinite number of closed fundamental domainR d.(F). Also if 
e> 0, then a number N(e) exists, and x(t) respectively CP(t), t < e, does 

meet the pointset d.(F - F) respectively CPd.CF - F) = d:(F* - F·) 
for all v> N(e). (I) 

Similarities g of which the factor of multiplication of distances, denoted 
by Igl, is bounded: 0 < p < Igl < q < 00, p, q constants, form a compact 
subset of the group space J. Rence if the factors Id:'1 are bounded in this 
way, then some subsequence d~p) of d: will converge to a similarity say 

d·. If p, is large, then d:(/I) transforms some point of CP(F) = F· into a 
point close to B. Without restriction we may then assume F to be such 
that B lies in the interior of d·(F·). This implies that B has a neigh-

borhood which does not contain any of the points of d~p)(F· - F*) for p, 
sufficiently large; in contradiction with (I). 

Because the factors Id: I are not bounded, a subsequence d.(p) of d. will 
exist for which limp->oold:(p) 1= ooor= O. In the first case limp_oold~p»)-ll=O. 
If p, is large, then (d:(p»)-l transforms same point very near to B (in the 

intersection of CP(t) and d~p).F(!)) into ff·. Because moreover I(d~p»)-ll 
is very small, (d~p»)-l. CP(t) will prove to have a limit point for t ~ 0, 
which is not a boundary point with respect to (d~p»)-l.X(t). But then 
liml->o CP(t) = 13 is not a boundary point with respect to x(t) either. 

Finally we come to the conclusion that d: contains a subsequence d:{Jl) , 
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with factors, that tend to zero. Because moreover the pointsets d:(F*) 
contain points that tend to B, the invariant points of the similarities 
d:(/,) also tend to B. This proves 

Lemma 3. If B is a boundary point, N(B) a neighborhood of B, 
U a bounded pointset in Es", then D* contains an element d*, such that 
d*(U) C N(B). 

§ 5. The set ot boundary points. 
Lemma 4. Let V be a closed subset ot the Euclidean space En, not 

contained in any En - I; n > O. Let G be a subgroup ot the similarity group 
operating in En, such that tor any g EG: g V = V. 

Moreoversuppose that tor any point B with neighborhood N(B) in Vand 
any bounded pointset U in En, tltere exists an element g EG such that 
g. U CN(B). 

Then V = En. 
(Roughly: small parts of Vare similar to large parts). 

Proof: 
The lemma is trivial for n = O. We suppose n> O. 
First we agree that any neighborhood under consideration will be the 

interior of a hyper sphere. Let U(A) and N(A) C U(A) (N(A) -=I=- U(A)) 
be neighborhoods of the point A E V. Let gE G be such that g. N(A).C 
Cg. U(A) C N(A). Straightforward geometrical consideration as weIl as 
the BROUWER fixed point theorem then show that N(A) contains a point 
A * invariant under g. Let the factor of multiplication of distances of g 
be Ig I < 1. The set of points gm. A (m = 1, 2, ... ) all belonging to the 
closed set V, converges to A *, which therefore also belongs to V. 

Let Ig I also denote the geometrical multiplication with centre A * 
and with the same factor of multiplication of distances as g. h = g. Igl-l 
is then a rotation about A *. Suppose the point B -=I=- A is in V n U(A). 
The set of points hmB(m= 1,2, ... ) has at least one limit point on the 
hypersphere with centre A * and radius = distance (A *, B). Therefore 
if 8 >0, integers mI and mz = ml + m > ml exist, for which 

angle (hm, B, A *, hm. B) = angle (B, A *, hm B) = angle (B, A *, gm B) < 8. 

Because gm. B = C is a point of V as weIl as of N(A) we have: 

Statement 1. If A and B are different points in V, N(A) is a neigh­
borhood of A, ê > 0, then there exist points A * and C in V n N (A.), for 
which angle (B, A*, C) < 8. 

This statement allows us to verify: 

Statement 2. There exists a set of points Al> A;, A;, ... , A~+l' 
R, all in V, such that R is interior point of the nondegenerated simplex 
(Euclidean, not only topological) with the other points as vertices. 

The existence of n + 1 points Al> A 2 • ••• , An+l in V, but not in any ' 
En-I, follows from the conditions in the lemma. We replace A 2 by two 
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points A; and Ol both in V, near to Az and su eh that the angle (Al' A; ,Ol) 
is so small that Ol lies on the same side of the hyperplanes spanned by 
A;, A3' A4' ... , A"+l and by Al' A3" .. ,An+l as the inside of the simplex 
with vertices Al' A;, A3" .. ,An+l does. Statement 1 allows this ehoiee. 

In the next step we replaee A3 and Ol by two points A: and Oz in V, 
near to A3' and sneh that O2 lies on the same side of the hyperplanes 
CA;, A:, A 4" .. ,A,,+l)' (Al' A:, A 4" .. ,A"+l) and (Al' A;, A 4" .. ,An+l) 
as the inside of the simplex (Al' A;', A: , A 4" •• , A"+I)' Statement 1 
allows this ehoiee. 

Continuing with analogous steps we finally obtain thc required set of 
points Al' A; , A:, ... , A~+I and On = R. 

Let O(T, tp) be asolid hypereone in En, that is the locus of halflines 
whieh in their fixed endpoint T meet one of these half lines under angles 
< tp < n/2. Let us denote the part of a O(T, tp) whieh is between or in 
two eoneentrie hyper spheres with eentre Tand radii rand r· t(r > 0, 
o < t < 1) by OS(T, tp, f). Then we are able to formulate: 

Statement 3. There exists a point RE V, an augle tp < n/2 and a 
number t > 0, sueh that any OS(R, tp, f) eontains at least one point of V. 

Consider a eonfiguration Al> A 2 , • •• , A7I+I' R of points in V, for whie~ 
R lies in the interior of the simplex Al" .. , A"+I' Then there exists a 
number tp < n/2, sueh th at any solid eone G(R, tp) eontains at least one 
of the points Al' ... , An+ l' Even "I' ean be ehooscn sueh that the same is 
truc if we replaee R by any point in a suffieiently small neighborhood 
N(R) of R. So we do. Now hit g EG transform a large neighborhood U(R) 
of R onto g. U(R) C N(R). g has an invariant point in N(R) n V. Without 
restrietion we may assume that this point is R. Let Ig I < 1 be the factor 
of multiplieation of distanees of g, and let p < 1 be the ratio of the mini­
mum and the maximum of the distanees (Al' R), (A2 , R), ... , (An+I' R). 
Then the property of statement 3 holds for any 

OS(R, tp, f) = OS(R, tp, Igl' p/2) 

(Consider the set of points gmAi CV; m = 1, ... ; i = 1, ... , n + l.) 
Sta temen t 4. If SS is a solid hyper sphere in En, tp < 71:/2, 0 < t < 1, 

then for any point P suffieiently near to SS, there exists a OS(P, tp, f) 
whieh is eompletely eontained in the interior of SS. 

This follows immediately from the analogous statement for t,he 
Euelidcan plane E2. 

Assumption. Now suppose V =F- En. Then beeause V is closed, there 
exists asolid sphere SS in En, thc inside of whieh has no point in eommon 
with V, but the boundary of whieh interseets V in at least one point 
T. (V is not void by assumption I). There exists a transformation hEG, 
whieh transforms the point R of statement 3 into a point so near to the 
point T of the boundary of SS, that there exists a OS(hR, tp, t) completely 
contained in the interior of SS (Conditions in the lemma; statement 4; 
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1p and I are the constants obtained in the proof of statement 3). That 
particular CS(hR, 1p, f) does not contain any point ol V, because the interior 
of SS does not. On the other hand h is a 1+--+-1 similarity transformation 
which transforms all CS(R, 1p, f) onto all CS(hR, 1p, f) and which leaves V 
invariant. Because all CS(R, 1p, I) did contain points of V, so do all 
CS(hR,1p, f). Hence the assumption leads to a contradiction, and V = En 
q.e.d. 

As a corollary of lemma 4 we have 

Lemma 5. 
Let V be a closed subset of Eli; n > 0. Let G be a subgroup of the 

similarity group operating in Eli, and for any gE G : g V = V. Moreover 
suppose that for any point B in V with neighborhood N(B) and any 
bounded pointset U in Eli, there exists a gE G for which g. U C N(B). 

Then V = Em, m = - 1, 0,1, ... , or n. 

Proof: Apply lemma 4 to the linear space Em of smallest dimension 
which contains V. 

Lemma 5 can be applied to our problem: The closure of the set of 
boundary points in Es" of the fixed mapping ~, is invariant under the 
similarity transformations d* E D*, operating in Es". Lemma 3 presents 
the other necessary conditions for application of lemma 5. Hence: 

Lemma 6. The closu1'e ol the set ol boundary points in Es", unde1' the 

lixed mapping ~ : X --+ X*, is a linea1' sp<1ce Em, m = - 1,0, ], ... , n. 

§ 6. The set of boundary 1)oints. Contim!ed. 
Assumption 1. In lemma 6 is the number m = n. 
Let A be the invariant point of the similarity a E D* with factor of 

multiplication of distances la I < 1. Let x* E X* and let the pointset 
~-l(X*) consist of the points x;.(À. = I, 2, ... ). Let, under the homo­
morphism D --+ D*, d correspond with a. As in § 3 we construct with each 
point xJ. as initial point xJ.(I), a continuous curve xJ.(t) (0 < t < 1) for 
which limt~O ~(xJ.(t)) = A is a boundary point! From that it follows 
that ~-l(A)is void. The set of invariant points like A is dense in En (conse-

quence of assumption 1). Assumption 1 leads to the contradiction: X* 
is void. 

Assumption 2: In lemma 6: 0 < m < n. 
Let A and B be two different invariant points of simiJarities a and b 

respectively; a, bE D*, lal < 1, Ibl < 1. Consider the set of numbers 
lalT'lbl' (1' =t=- 0, s =t=- ° integers). This set has the number 1 as a limit 
point. Therefore a sequence c. = aT. bs• E D* exists for which lim.->co Ic. I = 1. 
From the activity of c. on the point B we deduce that the set (c.Y'(v = 
= 1, ... ; ft = integer ft =t=- 0) has in the similarity group space the identity 
not as an accumulation point. 

Let e be a sm all positive number. We determine a number N = N(e) 
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so large that for any rotatjon r in a centered Euclidean vector space of 

dimension n and a vector ;, the angle between -; and at least one of the 
-+ 

vectors rl' v, ° < ft < N, is smaller then ê. This is possible because the 
sphere of unit vectors is compact and has an invariant measure (angle). 

Next we choose c = a!· b' obeying (c exists!) 

1- ê < Icl'l = la,vc"a-rl < 1+ ê for all ° <-ft < N, l' integer. 

We denote the set of boundary points of qJ by Em. A, B E Em. Let the 

line (P*, A) be perpendicular to Em, and let P EX, CP(P) = p* E X* . The 
points (a" cl' a- r) A are different from A, though for 11 ~ 00 they converge 
to A. There exists a value 11 = p, so that the distance (A - (al> cl' a-I»A) 

is smaller then ê for ° < ft < N. Idem for any 11 < p. 
The points (al> cl' a-I» P* (0 < ft < N) are contained in the linear space 

of dimension n - m perpendicular to Em in the point (al> cl' a-I»A. 

The angle between the line {A ~ p*} and the line 

{(al>c"a-P)A ~ (a P cl' a-I»P* 

is, for a particular choice: ft = u, smaller then ê (see above). 
Because ê was arbitrary, it now follows (elementary) that any neigh­

borhood N(P*) of P* contains points d* P* (d* E D*) different from P* 
and equivalent with P*. 

If ° < m < n - 2 or m = n -I, then X* determined by Em is simply 

connected and the mapping q;: X ~ X* is topological. The points 
aequivalent with p* under the covering group cannot converge to p* in 
this case. Contradiction. 

If m = n - 2, then cp is not topoiogical and (~, X) is the universal 

covering space of X*. Every point x EX can be described by the point 
x* = CP(x) and an angie of rotation about the En - 2 of boundary points. 
We call the angle: argument. Let under the homomorphism D ~ D* : 
a ~ a, c ~ c. Clearly: 

arg (a" cl' a-") P = arg cl' P. 

The points (aO cl' a-°)p, 11 < p, ° < ft < N, are then different and aequi­

valent under the covering group D in X, and they are contained in a 

compact bounded set of X. Rence they have a limä point in X: contra­
diction. 

Assumptions land 2 being false, Lemma 6 yields: m = - I or 0. 
m = - I was considered in lemma 2. If m = 0, n > 2, then cp is topolo-

gical; the simplyconnected space X* can be identified with X. If m = 0, 

n = 2, then X is the wellknown universal covering space of a plane with 

exception of a point. If m = 0, n = I, X* is a Euclidean half line. (The 
case m = 0, n> 2 was considered in KUIPER [6] section 5b). We finally 
state our results in the 
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Theorem. The universal covering space (with preservation ol the sim E 
structure!) ol a compact connected locally sim Espace ol dimension n> 0 
is either the Euclidean space Esn, or a) lor n > 2: the same with exception 
ol one point, b) 101' n = 2: the universal covering space ol the Euclidean plane 
with exception ol one point, c) lor n = 1: the Euclidean hailline. In the 1i1'st 
case the original space is determined (identilication) by a (cove1'ing- )group 
ol Euclidean tmnslormations (lemma 2). In the second case a) idem by a 
group genemted by a subgroup Q ol rotations about the excluded point and a 
similarity b (b is not a 1'Otation) with the excluded lJoint as invariant 1loint, 
and which commutates with Q: Db = bQ. In the second case b) u:e use polar 

coordinates: (radius, angle) = (r, w) in the space X. The covering group i8 
generated by two translormations: (1) r' = r, w' = w + constant and (2) 
r' = K. r (0 < K < 1), w' = w + constant. In the tMrd case c) the covering 
group is generated by a geometrical multiplication: r' = K· r (0 < K < 1). 

Technische Hogeschool, Dellt, Holland. 
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