MATHEMATICS

A FAMILY OF PARAMETERFREE TESTS FOR SYMMETRY WITH
RESPECT TO A GIVEN POINT. II

BY

J. HEMELRIJK

(Communicated by Prof. D. vAN DaNTzIG at the meeting of June 24, 1950)

6. Introduction.

6.1. In a previous paper on this subject l) an exact test has been
given for the hypothesis H,, that » random variables z;(i=1, ..., n)
are distributed independently, each with a probability distribution,
which is symmetrical with respect to zero. We shall now give a general-
isation of this test by describing a family of tests for H,, which contains
this one as a special case. The computations involved in the application
of the test are described in section 11 and an example is given at the end
of this paper in section 12.

6.2. These tests will be based on the simultaneous application of
the sign test, which depends on the number of positive and negative
values among 2,, ..., ?,, and on the application of a parameterfree two
sample test to the two groups of values z;, ..., 2, and y,, ..., y,, defined
in section 3.

A two sample test is a test for the hypothesis H’, that two random
samples =z, ...,x, and y, ...,y, have been drawn independently
from the same population. We shall mainly be concerned with a “family”
of two-sample tests, consisting of those two-sample tests, which are based
on the fact, that, assuming H' to be true, all partitions of the n,+ n, values
z; and y, of the two samples, taken together, into two samples of 7, and
n, values respectively, have the same probability. This fact may also be
expressed by saying, that, if H' is true and the samples are drawn in a
fixed order, all permutations of the obtained values are equally probable.

6.3. Several two-sample tests have been developed on this basis,
e.g. by E. J. PrtmMaN (1937), N. SMIRNOFF (1939) (using a theorem developed
by A. KoLMoGOROFF (1933)), A. WaLp and J. WoLrowIirz (1940) and
F. WiLcoxoN (1945). Wilcoxon’s test was studied in detail by H. B.
MaxN and D. R. WHITNEY (1947).

7. The main theorem.
7.1. Let T be a two sample test of the type described above and let

1) These Proceedings 53, 941 —955 (1950).
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u, ...,u, be the statistics, on which 7' is based. These statistics are
known functions of the random variables x,, ..., x, and y,, ..., y, and
n, and n, are given numbers. Usually »= 1, but this is by no means
necessary. We shall therefore give the main theorem in the more general
form with » = 1.

Since we are using two-sample tests, which have been developed pre-

viously, we may assume the simultaneous distribution of uy, ..., u,
under the assumption that H' is true, to be known. We shall denote by
(11) G* (uy,..., w,)
the conditional simultaneous distribution function 2) of u, ..., u,, under
the condition (denoted by the asterisk), that the two samples, taken
together, assume the set of values z, ..., x,, ¥, ..., y,, and under the
assumption, that H' is true.

7.2. If, instead of the two samples, we take the values z), ..., 2,
and y,, ..., y,, defined in section 3, it follows from lemma 3, that, if H,

is true, if n; = n; and if condition Z is satisfied, the conditions indicated
by.the asterisk in (11) are satisfied too, and that (11) is the conditional

distribution function of uy, ..., u,. We express this fact by changing the
notation of this distribution function into

(12) G (yseees | Z5 0y = my; Hy)

where w,, ..., u, are derived from a;, ...,z, and y,, ..., y,, the group

of positive values and the group of negative values (taken positively) of
the original observations z,, ..., z,, which are available to test the sym-
metry of the variables z,, ..., z,.

For n,=0 and n,=n— m (i.e. n,= 0) the statistics u,, ..., u, have
not yet been defined, since one of the groups y, ..., z, or ¥, ..., ¥, is
empty in that case. Defining for this case ;= ... =u,= 0, we find

from lemma 2 and 3:

Theorem III: If H, is true, the conditional simultaneous probability
distribution of n; and uy, ..., u,, under the condition Z, is given by

Plny=n;u, S uys..5u, = u,|Z; H))=
(13)
i () O ),

with 0 < n, < n—m.

Remarks: 1. If we want to test the hypothesis H, that all z; are
distributed independently according to the same symmetrical probability
distribution, 7' need not be restricted to the family of tests described in
6. 2. For it is easy to prove, that under the hypothesis H; and under the
conditions n; = n; and m = m the values z,, ..., z, and ¥, ..., y, may

2) We use the term ‘“distribution function’ in the sense sometimes denoted
by the term ‘‘cumulative distribution function”.
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be regarded as independent random samples from a common population.
This may be of importance, if additional information about the common
probability distribution of the z; is available, or is contained in the hypo-
thesis to be tested, since we may then use any two sample test based
on this information.

2. Theorems I and III enable us to give a test for H,, based on the
statistics n; and uy, ..., u,. Since a family of tests 7 may be used (cf.
section 6. 2), we have a family of tests for H,. The exact test, described
in part I of this paper, is a member of this family as may be seen from
remark 3 of section 4. 2. 7' is then a two sample test based on the statistic u.

8. The critical region. .

8.1. In section 7.1 we have supposed the conditional probability
distribution of wy, ..., u, under the conditions Z, n,=n, and hypo-
thesis H;, to be known, since 7' is a known two sample test. For the same
reason we now assume a critical region for uy, ..., u, to have been chosen
already. We shall, however, want to make a distinction between bilateral
and unilateral critical regions. To make this clear, the critical regions of
some of the two-samples tests mentioned in 6.3 will be described.

8. 2. WirLcoxoN’s test depends on the number of pairs (z; y,)
G=1,...,m; k=1,...,ny) with ; > y,. This statistic, usually denoted
by U, can take all values 0,1, ..., n, + n,. A unilateral critical region
has either the form

ny N,
u-—4t=>7,

or
nn
vt < g,

) =
-~

where U, depends on n,, n, and the chosen significance level a. The first
of these critical regions is suitable for testing the hypothesis H’, that
2, ...,%, and ¥, ...,¥y, are random samples taken independently
from the same population, against the alternative (composite) hypo-
thesis, that z,, ... z, are independent observations of a random variable
x and ¥, ..., Y, of a random variable y, with

Plx<yl<}
and the second critical region is suitable for testing H' against the alter-

native hypothesis, that
Plx<y]>1$7?)

3) This has been proved recently by Prof. D. vax DanTzIG as a generalisation
of MaNN and WHITNEY’S theorem, according to which. WILcOXON’s test is consistent
against alternatives with P [x =< a] < P [y < a] for all a, if the first of the
above mentioned unilateral critical regions is used, and consistent against
alternatives with P [x < a] > P [y < a] if the second ecritical region is used.
Cf. D. vax Dantzic (1947—1950), Chapter 6, § 3.
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A symmetrical bilateral critical region for U has the form

Ny Ny
U=

=2U,

and is suitable for testing H’ against the alternative hypothesis, that
Plx<yl#4. 9

The probability distribution of U can be computed exactly with the

aid of a recursion formula given by MANN and WHITNEY, under the

assumption, that H' is true and that x and y have a continuous probability
distribution. It has been tabulated by them for n, < 8 and n, < 8 and

n, Ny

for larger values the normal distribution with mean and variance

T3 MMy (g + my + 1) (Which is the asymptotic distribution of U for n, — oo
and m, — oo, m,/n, and ny/n, being bounded) is a good approximation.

8. 3. The statistic of PrrMaAN’s test, which we shall also denote by U,
is the difference of the means of x;, ..., x, and y, ..., y,:

1 2 1
U==>x,—— 3 Y

ny i1 Nz =1

The unilateral critical regions

u é e U(Il
and
u=ru,
where U, depends on the observed values xy, ..., ,, ¥, ..., ¥, and the

chosen significance level a, are suitable for testing H’ against the alter-
native hypotheses

Ex < 8y
and
Ex> 8y
respectively.
A bilateral critical region
Ul = Ui

is suitable for testing H’' against the alternative hypothesis
Ex £ &y

The probability distribution of U can be derived exactly from the
values 2y, ..., 2,, ¥, ..., ¥, This, however, is only practicable, if n, and
n, are very small. For larger values of n; and n, PrtManN has given an
approximation for the distribution of U. The assumption of continuity
is not necessary.

8.4. The test of WAaLD and WoLrowiTz is based on the number of
runs in the sequence of values z; and y, (=1, ...,n; k==1, ..., m,)
' 76
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when arranged according to decreasing magnitude. Small values of this
statistic are critical. Its probability distribution is known exactly as
well as asymptotically, under the assumption that H' is true and that the
probability distribution of x and y is continuous. F. S. SwEp and C.
EisenHART (1943) have given tables of this distribution for , < n, < 20.

For this test we shall not try to make a distinction between unilateral
and bilateral critical regions, since the class of alternative hypotheses,
for which the test is consistent contains nearly all possible alternative
hypotheses. It is difficult to see how this class could be divided into two
mutually exclusive classes of a kind similar to the two classes of alter-
natives for Wilcoxon’s test or Pitman’s test, which have been described
in 8.2 and 8.3. As far as our application of the test of Wald and
Wolfowitz is concerned, its critical region can therefore be taken to be a
bilateral one.

8.5. The probability distribution of the statistic of the test of
KoLMOGOROFF-SMIRNOFF is known asymptotically only. An exact method
for determining the confidence limits for an unknown distribution function
(the problem, which had been solved asymptotically by A. KoLMOGOROFF
(1933)) has been given by A. WaLp and J. WoLFowITz (1939). Possibly
the method applied by Smirnoff to derive a two sample test from Kolmo-
goroff’s theorem might be applied to this theorem of Wald and Wolfowitz
and give an exact two sample test of this type.

So far, however, we have no knowledge either of the exact probability
distribution of the statistic of this test, nor of the amount of the diver-
gence between this exact distribution and the asymptotical one, derived
by Smirnoff. Apart from this the remarks, made above about the critical
region of the test of Wald and Wolfowitz, apply to this test also. No
attempt will be made to make a distinction between unilateral and
bilateral critical regions. The only difference is, that in this case large
values of this statistic are critical, and that no continuity of the pro-
bability distribution of x and y is needed.

8. 5. We shall now consider the choice of a critical region for testing
H,, if no alternative hypothesis is specified. In order to simplify the notation,
we confine ourselves to »= 1, i.e. to the case, that the two sample test T'
is based on one statistic U. Denoting the bilateral critical region for 7'
with size ¢ by R,_, .(¢), we propose the following construction of a
critical region R} with size < a for testing H,, applicable if @ =2-"*m+1:

A. Let k be the largest positive integer = 7—“_2'—m , for which the relation

(1) - G EF=
holds (where m is the value of m following from the observations z;, . . ., z,)

or, if no positive integer satisfies (14), k= 0.
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B. Put
3 -
(15) ﬂ=ﬂ(n—m, a): 9-n+m+1 Z (n m)
i=o \ ?
and
_ n—m
(16) e= e(n—m, my, a) = n—n(f—gk—l " In—m
( "y )

C. Then the critical region R} consists of those points (n;, U), for
which at least one of the following two conditions holds:

Ci: i =kormn =n—m—k
02: UERn—nl.n, (6)

where 6 < ¢, and ¢— 6 is as small as possible. [It is clear, that the size
of Rf is then =a.

8.6. For n—m=12 and a= 0,10 (a has been chosen rather large
to get better diagrams) R} has heen outlined in fig. 3 for the case that
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Fig. 3. Critical region R, when no alternative hypothesis is specified
and when T is WiLcoxoN’s test or Prrman’s test; a = 0,10.

Wilcoxon’s test or Pitman’s test is used for 7' and in fig. 4 if the test of
Wald and Wolfowitz is used. In these figures Q(U|Z; n, = n,; H,), the
conditional distribution function of U, has been plotted on vertical lines
above the points n;=1,...,n, = 11. Rf consists of the points (n,, U)
on those parts of these lines, which have been drawn. The points with
n,=0 and n;= 12 belong to the critical region according to 8.5. 4. This
has been indicated by drawing the vertical lines above these points. The
broken parts of the vertical lines indicate the region, where H, is not
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rejected. The reader should bear in mind, that in reality G is disconti-
nuous.
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Fig. 4. Critical region R}, when no alternative hypothesis is specified
and T is the test of WaLp and WorLrowITz; a = 0,10.

Remark: The critical region R} for the case, that the test of Kolmo-
goroff-Smirnoff is used for T', can be constructed in an analogous way,
large values of G being critical instead of small values. Strictly speaking,
however, we do not know much about a in that case.

8.7. As a special alternative hypothesis, against which H, can be tested,
we consider the hypothesis H (cf. section 5. 3) of a displacement of one or
more of the variables z; in one direction along the z-axis. In this case we
restrict the “family’ of tests T' to those tests, where a unilateral critical
region can be indicated (cf. 8. 2, 8. 3 and 8. 4). We shall denote unilateral
critical regions of the types U < U, and U = U, with size ¢ by R, _,, , (¢)
and R, , , (¢) respectively. These critical regions may also be defined
by the relations

GU|Z;n=n; Hy) =G, =G (U,|Z; ny=my; Hy)
and

GWU|Z;ny=mny; Hy)) = G1=G(Uy|Z;ny=mn,; Hy).
For reasons given in section 5. 3 we exclude, if » — m is even, the points
(ny, U) with n, = 7%1 from the critical region R} for testing H, against
H. We further remark, that for Wilcoxon’s test and Pitman’s test the
probability of small (large) values of U increases if some of the variables
z; are shifted towards the left (right) and decreases, if the displacement
is towards the right (left) along the z-axis (cf. section 5. 3). We therefore

propose for these cases the following construction for R} (with size < a),
applicable if @ = 2-n+m+1;
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A. Let k be the largest positive integer < 1%7», for which the relation
(14) holds, or, if no positive integer satisfies (14), k= 0.

B'. Define # by (15) and (cf. (16)):
(16') e =¢ (n—m,ng, a)=¢e(n—m, ny, a)
if n—m is odd, and

(16"") '=¢ (n—m,n,, a)= o e
e=en P T m—2k—2 (n—m)

ny

if n—m is even.

C'. Then R} consists of those points (n,, U), for which at least one of
the following three conditions holds:

Ci;: qmZkorn,=n—m—k

Cy: my < n;m and UeR,_,,, ()

C:;: nl > n;m' a-nd U e Rylgl—m.n. (6)

2

where § < ¢, and ¢— § is as small as possible.
For n—m =12 and a= 0,10 R} has been given in figure 5 for the
case that Wilcoxon’s test or Pitman’s test has been used for 7'.

G

09
08 i
07
0p
05
04

Q3

02

o)

10 12 n,

D T Ry
S
O c e e e e s mca e e e na n s - o - —

B - e — — e —————————]
e o e e e e e e m—————— e ]
L Ty p

] 3

Fig. 5. Critical region R}, when the alternative is a displacement of at least one
of the distributions in one direction along the z-axis; a = 0,10.

If the direction of the displacement is specified in the alternative
hypothesis, the critical region may be confined either to the left or to the
right half of the diagram only, using 2¢ instead of a in (14) and (15).

8. 8. The computations are now comparatively simple. A table of
k, 2"~™ and of the quantities

a—ﬂ n—m
(17) v= n—m—2k—1 " E
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and, for even values of n —m, of

r__ a—ﬁ =
(18] V=i T

has been computed by the Computing Department of the “Mathematisch
Centrum” for a= 0,025; 0,05 and 0,10 and for » — m = 10(1)50 (cf.
section 10). From this table the value of ¢(n — m, n,, a) or ¢'(n — m, n,, a)
is easily computed with the aid of a table of the-binomial coefficients (cf.
5. 2). If then condition C (or C') is satisfied, the result is significant with
significance level < a.

Moreover, if #, % 0 and % n — m, an upper bound for the size of the
smallest critical region of type Ry or R}, which contains the point (n,, U)
following from the observations, may be found as follows:

Let n be the size of the smallest critical region for U, given n — m and =,
(either bilateral or unilateral), which contains the observed value U, then

(19) a* = 2-"+m (n—m + 1) (";m).n > a.

8.9. Sections 8. 5 and 8. 6 may be applied to the special case, des-
cribed in sections 4 and 5. According to remark 3 of section 4. 2, u has,
if H, is true, for given n;, and under the condition Z, a hypergeometric
distribution. For this distribution we have

(20) <g(“|Z;"'1=n1;Ho)=nlr_?_l,,,2
and

5 __ rnyng (ny4-ng—r)
(21) Oulz:n=n;m, — (ny1+7ng)2 (ny+n,—1)

with n, + n,=n — m. A normal probability distribution with (20) and
(21) as mean and variance respectively is a good approximation of this
probability distribution of u, especially if a continuity correction is applied.

If » —m is so large, that the exact method of section 5 becomes too
laborious, this approximate method may be used instead. It should,
however, be born in mind, that the construction of the critical regions
R} and R} is different from the construction of R, and R,, and that R} and
R} should therefore not be regarded as approximations of R, and R,, but
as an approximate method using a slightly different form of critical
regions.

On the other hand, if the number of observations is small and 7' is &
test, such that the exact distribution of U is known, the critical region
may, for the general case, be chosen according to a system analogous to
the method described for the special case in section 5. We shall not go
into the details of this method for other special cases, since the principle
remains unchanged for every 7.

9. Remarks.
Of the two-sample tests, mentioned in 6. 2, the tests of Wilcoxon and
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of Wald and Wolfowitz can only be applied to our problem if x;, ..., z,
and y,, ..., y,, are all different. This is not required for the tests of Pitman
and Kolmogoroff-Smirnoff. On the other hand, the latter is not an exact
test, as has been pointed out already in section 8. 5. Since small values
of n, or n, will often occur in the application of the test, this is a serious
drawback. The same applies, to a certain extent, to Pitman’s test, since
the computation of the exact distribution of its statistic is impracticable
for values of #, and n,, which are at all large. Furthermore little is known
about the accuracy of the approximation to the distribution of U, given
by Pitman, especially in the case of discontinuous random variables.

So far the only exact test for H,, developed untill now, which is valid
if there are equal values among xy, ..., ,, ¥, .. ., ¥, and which can be
used for reasonably large values of n, + n,, seems to be the one described
in sections 4 and 5. Moreover for large values of 7, 4 n, the accuracy of
the approximate method, described in 8. 9 is independent of the number
of equal values among x;, ..., 2, and ¥, ..., ¥,.

If no equal values occur among the z; and y,, Wilcoxon’s test seems
a very suitable one for 7, especially when the alternative hypothesis is
the hypothesis H of a displacement along the z-axis.

The number of values z;, which are equal to zero, is of no consequence
whatever as far as the choice of 7' is concerned.

11. Explanation of the table and of the practical application of the fest.

The use of the table in applying the test may be facilitated by the
following indications:

n denotes the number of observations z,, ..., z, and m the number of
values z; which are equal to zero;
n, denotes the number of positive values 2, ..., x, among z,, ..., 2,.

If ny < kor ny = n—m— k, Hyis rejected with significance level < a.
If k<n, <n—m—£k, two cases are to be distinguished:

I. Ifno alternative hypothesis to H,, is specified, the chosen two sample
test T is applied to the two sets of values x;, ..., x, and ¥,, ..., ¥, (the
¥, are the negative values among z,, .. .,z, taken positively). This results
in a value U of the statistic U of 7. Let 7 be the size of the smallest
bilateral critical region for U, belonging to T, which contains U. If then

n—m
n= 7( " )
H, is rejected with significance level < a; cf. (17) for .

In case Wilcoxon’s test is used for 7', we have

n=2G (U|Z;n,=n,; Hy)
if U<"‘T"2 and
n=2{1—Q (U|Z;n,=n; Hy)}

if U>"‘T"’.



1

196

10. Table of k, 2™, y and 9'.
a= 0,025; 0,05; 0,10

e e e

a= 0,025 a= 0,05 a= 0,10
n-m on—m o —— ™ ——_ o ——— ™ —_ e —————
k 4 ¥ k i 7' k | i il
\ |
10 1024.10° 0 | 2,622.10° | 2,950.10° ‘ 0 5,467.10‘I 6,150.10° ‘ 0 |1,116.10® | 1,255.10*
11 2048.10° 0 | 4,919.10° | 0 [1,004.10 | 1] 2,260.10*
12 || 4096.10° 0 |9,126.10° | 1,004.10* | 1 | 1,987.10* | 2,235.10* 1 | 4,262.10 | 4,795.10*
13 || 8192.10° 1| 1,768.10* . 1] 3,816.10t 1 |7,912.10!
14 | 1638.10! 1 | 3,450.10* | 3,796.10! 1 |7175.10 | 7,892.10! 2 | 1,685.10% | 1,783.102
156 || 3277.10* || 1 | 6,560.10* 1 1,339.10% 2 | 3,035.102
16 | 6554.10t ; 1 |1,234.10® | 1,337.102 | 2 | 2,730.10® | 3,003.10° 2 | 5,709.10% | 6,280.102
17 1311.10?2 2 | 2,475.10% i 2520510 3 | 1,144.10°
18 || 2621.10% 2 | 4,776.10% | 5,175.102 } 2 |9,817.10% | 1,064.10% 3 | 2,203.10% | 2,424.10%
19 | 5243.102 2 | 9,091.10° ! 3| 1,991.10° I 3 | 4,175.10%
20 || 1049.10% 3 | 1,809.10° | 1,959.10% 3 | 3,825.10% | 4,144.10° 4 | 8,405.10% | 9,246.10°
21 2097.108 3 | 3,5621.108 3 |17,267.10% 4 | 1,622.104
22 || 4194.10% 3 | 6,749.10% | 7,231.10°8 4 | 1,473.10* | 1,596.104 4 | 3,086.10* | 3,344.10¢
23 || 8389.10° 3 | 1,285.10* 4 | 2,840.10¢ 5 | 6,248.104
24 1678.10% 4 | 2,624.10¢ | 2,812.10% 4 | 5,421.10* | 5,807.10% 5 | 1,205.10% | 1,306.10°
25 | 3355.10% 4 | 5,053.10% 5 | 1,101.108 5 | 2,299.10%
26 6711.104 4 |9,657.10% | 1,026.10° 5 | 2,125.10° | 2,278.10°% 6 | 4,679.10% | 5,069.10%
27 1342.108 5 | 1,970.10% 5 | 4,0688.10% 6 |9,019.10%
28 | 2684.10° 5 | 3,804.10° | 4,043.10° 6 | 8,281.10° | 8,874.10° 6 | 1,723.10% | 1,845.100
29 || 5369.10° 5 | 7,291.10% 6 | 1.600.108 7 | 3,5623.108
30 | 1074.10° 6 | 1,488.10° | 1,582.108 6 | 3,068.10¢ | 3,260.10¢ 7 | 6,785.10¢ | 7,269.10°
31 || 2148.10¢ 6 | 2,878.108 7 | 6,264.108 7 |1,298.107
32 || 4295.10° 6 | 5,5628.10% | 5,837.108 7 | 1,210.107 | 1,286.107 8 | 2,663.107 | 2,853.107
33 | 8590.10¢ 7 | 1,130.107 7 | 2,323.107 8 | 5,125.107
34 || 1718.107 7 | 2,187.107 | 2,307.107 8 | 4,755.107 | 5,053.107 8 | 9,808.107 | 1,042.108
35 || 3536.107 8 | 4,412.107 8 | 9,184.107 9 | 2,019.108
36 || 6872.107 | . 8 ! 8,611.107 | 9,092.107 8 | 1,765.108 | 1,864.108 9 | 3,883.10° | 4,126.108
37 1374.108 8 | 1,667.108 9 | 3,623.108 10 | 7,934.108
38 || 2749.108 9 | 3,376.10° | 3,565.108 9 | 6,993.108 | 7,383.10° || 10 | 1,534.10° | 1,630.10°
39 || 5498.10° 9 | 6,581.108 10 | 1,424.10° 10 | 2,951,10°
40 | 1100.10° 9 |1,273.10° | 1,337.10° || 10 | 2,765.10° | 2,918.10° | 11 | 6,052.10° | 6,430.10°
41 2199.10° || 10 | 2,590.10° 10 | 5.339.10° 11 | 1,169.10
42 | 4398.10° | 10 | 5,040.10° | 5,291.10° | 11 | 1,090.10%° | 1,151.10%°|| 11 | 2,248.10%°| 2,373.10%°
43 | 8796.10° || 10 | 9,755.10° 11 | 2,115.10%° 12 | 4,623.101°
44 1759.101 | 11 | 1.988.10%° | 2,088.10%° || 11 | 4,083.10° | 4,287.10%° 12 | 8,920.10'° | 9,415.10%0
45 | 3518.10% || 11 | 3,867.10!° 12 | 8,363.10%° it 13 | 1,825.101
46 || 7037.10% | 11 | 7,487.10% | 7,825.101 12 | 1,621.10 | 1,702.101t || 13 | 3,536.10'! | 3,732.10"!
47 1407.101* | 12 | 1,530.10%! 13 | 3,302.101 13 | 6,820.1011
48 || 2815.101 || 12 | 2,972.101 | 3,107.1011 | 13 | 6.420.10" | 6,744.1011 | 14 | 1,400.10% | 1,477.1012
49 | 5629.10 || 13 | 6,040.101! 13 | 1,244.10"2 14 | 2,708.10'2
50 | 1126.10%2 ] 13 | 1,177.10'%| 1,232.10'2 | 14 | 2,541.10'2 | 2,668.10'?|| 14 | 5,222.10' 5,483.1012
According to continental usage the comma designates the decimal sign (e.g. 0,5 = }).
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II. If H,is tested against the alternative hypothesis H of a displacement
along the z-axis in one direction (which one not being specified) of
some of the variables z;, a two sample test 7 is applied to 2, . . .,z, and
Y1 -+ Yo, Which allows a distinction between two unilateral critical
regions. Taking e.g. Wilcoxon’s test, the size %' of the smallest unilateral
critical region containing the value U, found from the observations, is
computed, using the unilateral critical region of the form

u- >,

=z

n—m

>—, and the unilateral critical region of the type

if n; >

u_?’ll._)nz é_ Uu

-

n—

5 (cf. 8.2).
In the first case, we have
'=1—G(U|Z;n,=n; Hy)
and in the second case
n' =G (U|Z;n,=ny; Hy).

If n-—-m is odd, and

if n, <

17, < y (n;lm)

7 , (n—m
n=vy ( n )
H, is rejected; cf. (17) and (18) for y and 7.

The values of 2"~™ have been included in the table to facilitate the
computation of the size a* of smallest critical region (either of unilateral
or bilateral type), which contains the point (n,, U), following from the
observations. This computation has been described in 8. 8.

or if n —m is even, and

12.  Ezample.

Let us consider a set of observed values z, ..., 2!

—8,0; —5,0; —4,5; —3,0; —2,7; —2,3; —2,1; — 1,3; —1,2;

—1,0; —0,9; —0,5; —0,2; 0; 0; 1,8; 2,5; 3,5; 6,2; 7,3; 7,4; 9,5.

We then have n = 22, m = 2, n, = 7. From the table of section 11 we
find (for a= 0,05)

20\ 3825 .
e=v/(7)= srsm0= 0,049

and k= 3. Therefore k <n, <n—m—k and a two sample test must
be applied. Let us take Wilcoxon’s test for this. The number of pairs
(z;, y,) with x; > y, is 73. According to section 8.2 we have

gU="L— 455

and

o, = VTIE 713(7 + 13 4+ 1) = 12,62,
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Applying a correction for continuity, we find
U—}—8U _ 72,5—45,5
Ou 12,62
From a table of the normal distribution we find therefore, that
n=P[|U—-EU| =|73—45,5||Z n,=n,; H,] = 0,032.

Since n < ¢, H, is rejected with significance level 0,05.

If, however, H, is tested against the alternative hypothesis H of a
displacement of some of the variables z; in one direction along the z-axis,
H, is not rejected, since

n <557 =& (m|Hy)

= 2,14,

and

U> nl2n2 & (U|m = ny; Hy)

thus G(U|Z; n,= n,; H;) having the value 1 — 0,016 = 0,984. The point
(ny, U) corresponding with this result is not contained in the critical
region R} (cf. figure 5). This means, that the observations do not indicate
a displacement of some of the z; in one direction along the z-axis. They
do, however, suggest displacements in both directions, or asymmetry
of some of the distributions or a combination of displacements and asym-
metry. This follows from the fact, that H, is rejected if no special alter-
native hypothesis is specified.

My thanks are due to Prof. D. vax Danrzic for his remarks and criti-
cism, which have been very helpful, and for reading the manuscript.
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