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1. Introduction. In a previous paper 1) the au thor has given a new 
proof of the well-known theorem of POINCARÉ and VOLTERRA th at a 
multiform analytic function assumes at a given point of the complex 
plane only a countabie number of dis tin ct values. He has announced 
there that he wiIl generalize the reasoning to a theory of Iocal hereditary 
properties of metric spaces and more generally to that of certain Iocal 
hereditary properties of uniform spaces. He also made there a short 
sketch of the chief features of this generalization. ft is this program me 
which shall be carried out in the work bearing the above title and of which 
the present paper is the first part. . 

We consider in this Part I not a metric in a metrizable space, but a 
pseudo-metric and more generally what we call a semi-pseudo-metric 
in an arbitrary T-space (cf. § 2). The chief röIe is played by what we eaU 
element-invariants, in particular by those termed basic integers (cf. § 8). 
It will probably be impossible to find precise set-theoric topological 
equivalents for the element-invariants. Consequently our theory, though 
very general and simpie, seems to be of purely metric nature. 

2. Local 8pherically hereditary properties ol a T-space R associated with 
a semi-pseudo-metric in R. Let R be a T-space (cf. [2,27], [1,37] 2)). If 
to every ordered pair of points x, y of R a non-negative finite real number 
I (x, y) is assigned such that 

1° l(x,x)=O; 
2° I (x, y) = I (y, x) (Symmetry axiom); 
3° I (x, z) :( I (x, y) -+ I (y, z) (Triangle axiom); 
4° for every XE Rand 'YJ> 0, {yl/(x, y) < 'YJ} is an open set; 

then the function I (x, y) is termed, following J. W. TUKEY, a pseudo­
metric in R [2,50]. A function I (x, y) in R satisfying 1°, 2°, 4° only (but 
not the triangle axiom) will be called a semi-pseudo-metric in R. 

The set {xiI (a, x) < e} (e> 0) is termed the sphere ol radius e and 

1) "On a theorem of Poincaré and Volterra", accepted for publication by the 
London Math. Soc. This paper will be referred to in the sequel as P.V. 

2) References to the bibliography at the end of the paper are given in brackets. 
The fust number designates the entry and subsequent numbers the pages. 
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ol centre a (or about a) in the semi-pseudo-metric I in R (cf. [2,51]) and is 
denoted by S,(ela) or, where no ambiguity is possible, by S(ela). 

The condition 4° can be then expressed by saying that the spheres in 
a semi-pseudo-metric I in R are open in R. This gives together with 1° 

(2. A) Every sphere about a in the semi-pseudo-metric I in R is an open 
neighbourhood ot a in R. 

From (2. A), 2°, 3° is readily deduced 
(2. B) A pseudo-metric I in R is continuous in both variables together 

[2, 50]. 
That is, given a, b in Rand "I > 0, there are open neighbourhoods 

U(a), U(b) in R of a, b respectively such that if x E U(a) and y E U(b), 
then I/(a. b) - I(x, y) I < "I. 

If S(ela), S(TJlb) are two spheres in the semi-pseudo-metric I in R, then 
we say that S(TJlb) is contained in S(ela) if and only if I(a, b) < e and 
"I < e - I(a, b) (cf. § 3). For a semi-pseudo-metric I this does not imply 
in general that S(TJlb) is a subset of S(ela); if, however, I is a pseudo­
metric, then from the triangle axiom follows that S(TJlb) CS(ela). 

As is weIl known a property Il of subsets of a T-space R is called here­
ditary (cogredient in the nomenclature ofHAusDoRFF, cf. [1,34]) provided 
that: if a subset A of R has the property Il, every subset B of A also has 
the property Il. 

A property Il of substes of R shall be termed spherioolly hereditary with 
respect to the semi-pseudo-metric I in R if and only if (2. a) il a sphere 
S,(ela) has the property Il, then every S,(TJlb) contained in S,(ela) also kas 
the property Il. 

If I is a pseudo-metric in R, then every hereditary property of R is 
spherically hereditary with respect to' I. The converse is not true. 

We call a property Il of subsets of Ra loool property ol R associated with 
the semi-pseudo-metric I in Rand say that R is looolly Il with respect to I 
if and only if (2. {3) lor every point x ol R there exists a sphere S,(e Ix) ol 
centre x which kas the property Il. 

If Il satisfies both (2. a) and (2. (3), then Il is termed alocal spherically 
hereditary property ol R associated with I. 

3. Elements. If 1 is a semi-pseudo-metric in a T-space Rand A a subset 
of R, then the supremum of {/(x, y) Ix, y E A} is termed the diameter ol A 
in I and is denoted by d,(A) or merely d(A). If the diameter of the whole 
space R in I is linite, then I is said bounded. 

We consider in the present paper only bounded semi-pseudo-metrics. 
In the sequel "semi-pseudo-metric" means always "bounded semi­
pseudo-metric" . 

Let Il be alocal spherically hereditary property of R assóciated with 
the semi-pseudo-metric I in R. For a given point a of R consider the set 
of all S,(ela) having the property Il and a radius e not greater than the 
diameter d,(R) = d of R, and denote by e the supremum of their radii. 



1201 

From the boundedness of I follows th at e(e < d) is finite, from (2. {J) 
follows e > O. Then 8Mla) will be termed a Il-element ol R in I, or, where 
no ambiguity is possible, i.e. where a single property Il and a single semi­
pseudo-metric I is considered, merely an element of R, a, its centre and e its 
radius ol validity. 

Two elements of R wiII be said equal (notation =) if and only if they 
have equal centres. We wiII show in the following §§ th at the set of all 
distinct elements of R is an analogue of the set 8 of all distinct power 
series with a non vanishing radius of convergence considered in P.V. 

Let us first make some simple remarks on elements of R. 
From the definition of supremum and from (2. a) follows 

(3. A) 11 8(ela) is an element ol R, then every spkere 8(e!a) witk the same 
centre a and with a radius e < e has the property Il. 

From (3. A) and (2. a) we get the following generalization of (3. A) 
(3. B) 11 8(ela) is an element of R, then every sphere 8(elb) which is con­
tained in 8 (e !a) kas the property II. 

Proof. By hypo thesis 0 < e < e - 1(8, b) (cf. § 2), and hen ce we can 
put e-/(a,b)-e=2'YJ>0.Then I(a,b) <e-17 and e«e-'YJ)­
-t(a,b). Hence the sphere S(elb) is contained in the sphere S(e-'YJla), 
which, by (3. A), has the property Il. (2. a) gives then (3. B). 

We consider in (3. C), (3. D), (3. E) a pair of elements of R, namely 
8(ela), S(alb), such that I(a, b) < e. 

From (3. B) 
(3. C) The radius ol validity ol 8(alb) satislies the inequality 0' ;:: e - I(a b). 

From (3. C) 
(3. D) The radius ol validity ol 8(alb) satislies the inequality e + I(a, b) ;:: 0'. 

Proof. If e + I(a, b) < 0', th en I(b, a) = I(a, b) < 0' and (3. C) eau 
be applied to the pair 8(alb), 8(ela). We obtain e ;::a-/(b,a)=a­
- I(a, b), which is in contradiction to e + I(a, b) < 0'. 

From (3. C), (3. D) 
(3. E) The absolute value ol the d1:tterence ol 0' and Q sa#slie8 the inequolity 
la - e I ~ I(a" b). 

Frorn (3. E) and (2. A) follows 
(3. F) The radius ol validity ol elements ol R considered as junction on R 
is continuous on R. 

Already the above considerations show that elements of R have pro­
perties very similar to that of power series elements of an analytic function. 
The analogy wiII become even more striking in the subsequent §§. 

4. a direct continuations. If 8(e la),S(a Ib) is an ordered pair of elements 

of R, then the quotient A = f (a, b) wiII be termed the "elative distance of 
e 

the ordered pair 8(ela), 8(alb) and denoted by S(ela) -8(alb) = A or by 

8(ela)~8(alb). If A ~ a, then we write 8(ela) -S(alb) ~ a or 8(ela ) ';; 11 
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-S(alb); if A < a, A> a, A ~ a, then we replace in the previous for­
mulas the sign :::;; by <, >, ~ respectively. 

S(a!b) will be called direct continuation of S(ela) and written S(ela)-+ 
-+ S(alb) if the relative distance of S(ela), S(alb) is less than 1 (i.e. 
S(ela) - S(a!b) < 1). The formulas S(ela) ... S(alb) = A, S(e la) ~S(alb) 
etc. have then a sense analogous to the above, the sign - being replaced 
by _. 

S(alb) will be said a direct continuation of S(ela) if both 0 < a :::;; 1 and 
S(e la) -+ S( a Ib) < a. Remark that in this definition the sign of equality 
is not valid, i.e. we have really I(a, b) < a e, but not I(a, b) = a e. The 
direct continuations defined before are, in this new nomenclature, 1 direct 
continuations. Remark that if S(alb) is a direct continuation of S(ela) 
and if 0 < a :::;; fJ :::;; 1, then S(alb) is also fJ direct continuation of S(ela). 

The configuration S(e la) -+ S(alb) will be termed a 2-chain. We consider 
more exactly the 2-chain 

( 4.1) S(ela) ~S(alb). 

From (3. C), (3. D) 
(4. A) The radius ol validity a ol S(alb) satislies the ineqnality (1 + A)e ~ 
~ a ~ (1- A)e. 

From (4. A) and from the symmetry axiom 

(4. B) 
A 

S(alb) -S(ela):::;; I-A. 

f(a,b)(I-Ale A A 
Proof. l(b,a)=/(a,b)= (I-Ale =I_A(I-A)e:::;;I_A a. 

In exactly the same way we prove 
A 

(4. C) S(alb) -S(ela) ~ 1 + A· 

From (4. B) follows that a sufficient condition for S(ela) to be direct 

continuation of S(alb) is 1 ~A < 1, i.e. A < i. Thus 

(4. D) 11 S(alb) is a direct continuation ol S(ela) and il a:::;; i, thenS(ela) is 

(1 ~a) direct continuation ol S(alb). 

5. Simple conligurations. In §§ 5, 6 we assume that I is a pseudo­
metric. The results of §§ 5, 6 are in general not valid for semi-pseudo­
metrics. A consequence is that our theory can be fully developed only for a 
local spherically hereditary property IJ associated with a pseudo-metric I 
in R. We have considered semi-pseudo-metrics because they are far more 
general than pseudo-metrics and because all the results of the present 
Part I with the sole exception of those of §§ 5, 6 and of Theorem (12. B) 
are valid also for them. 

We consider first the configuration 

(5. 1) S("rlc):- S(e:a) ~S(a:b). 
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From (4. A) and from the triangle axiom 

(5. A) 
A+B 

S(Tlc) - S(alb) ~ 1 _ B' 

Proof. By (4. A) we have T :;?! (I - B)g. From f(a, b) = Ag, f(a, c) = 
= Be, from the symmetry axiom and from the triangle axiom we get 
f(c, b) ~ (A + B)(!, and hence 

(A + 11\ ('A + B) f(c,b)~,l_jj)(I-B)(!~ l-B T. 

From (5. A) 
(5. B) To every pair a, a' witk 0 < a < a' ~ I it is pos8ible io determine fJ 
witk 0 <fJ < 1 suck that if S(alb), S(Tlc) are respectively a, fJ direct con­
tinuations of S(ela), tken S(alb) is a' direct continuation .of S(Tlc). 

Proof. In the configuration 

(5. 1') S(Tlc) ~ S(ela) ..::; S(alb). 

where 0 < a < a' ~ 1 we have to consider S(e la) ~ S(alb) = A < a as 
fixed and to de ter mine fJ such that S(alb) be a' direct continuation of 

a'-a 
S(T lc). It suffices to take fJ = Ha" for then, by (5. A), we get S(Tlc)-

-S(alb) < ~~;= a'. 

Second we consider the configuration 

(5. 2) 

(5. C) 

Proof. 

S((!la) -4. S(alb) ~ S(wld). 

S((!la) - S(w!d) ~ A + C(1 + A). 

From the triangle axiom and from (4. A) follows 

f(a, d) ~ Ag + Ca ~ Ag + C(1 + A)g. 

(5. D) To every pair a, a' witk 0 < a < a' ~ 1 it is ]Jossible to determine 
Y witk 0 < y < 1 suck that if S(alb) is a direct continuaiion of S(ela) and 
S(wld) is y direct continuation of S(alb), tken S(wld) is a' direct continuation 
of S(e la). 

Proof. In the configuration 

where 0 < a < a' ~ 1, we have to consider S(e la) ~ S(a lb) = A < a as 
fixed and to determine y such th at S(w! d) be a' direct continuation of 

a' a 
S(ela). We can take Y=-l-,for by (5.C) we get +a 

S((! la) - S(w Id) < a + y(l + a) = a'. 
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6. Some other eonliguration-invariants. 

(5. B), (5. D) allow to overlook the eonfiguration 

(6.1) S(Tle) ~S(!?la) ':::S(alb) ~S(wld). 

(6. A) To every pair a, ar with 0 < a < ar ~ 1 it is possible to determine 
{3, y with 0 < {3, y < 1 sueh that il, in (6. 1), S(Tle) is {3 direct continuation 
ol S(e la) and S(w Id) is y direct continuation ol S(alb), then S(w Id) is ar direct 
continuation ol S(Tle). 

Proof. Choose a" su eh that a < a" < ar. Determine, by (5. D), 
y(O < y < 1) su eh that 

a" a 
S(ela) .... S(wld) <a", i.e. take y= l;a. 

Consider the eonfiguration S(T Ic) ~ S(e la) ~ S(w Id) and determine, . 
by (5. B, .13(0 < {3 < 1) sueh that 

I • af-a" 
S(Tle) .... S(wld) < a, 1. e. take {3 = 1 + a'· 

We are now able to prove 
(6. B) To every pair a, ar with 0 < a < ar ~ 1 it is possible to determine {3 
with 0 < {3 < 1 such that il S(ela) S(alb) are a direct continuations ot one 
another and S(Tle), S(wld) are {3 direct continuations ol S(ela), S(alb) res­
peetively, then S(T Ic), S(w Id) are a' direct continuations ot one another. 

Proof. (6. B) is an immediate eonsequenee of the applieation of (6. A) 
to the eonfiguration 

(6. 2) 
IJ <a <IJ 

S(Tle) ~S(ela);= S(alb) .... S(UJld). 
a > 

From the proof of (6. A) follows that it suffiees to take for {3 the less of 
the numbers 

a" - a a'-a" 
1 + a' 1 + a'· 

The real numbers eonneQted with the eonfigurations eonsidered in 
§§ 4, 5, 6 never depend on the partieular elements of the eonfigu~ation. 
For this reason every sueh number will be ealled an element-invariant or a 
eonliguration-invariant. 

7. Derived sets. Element-symmetrie properties . If S (e la) is an element 
of R, the set of all distinet elements of R whieh are a direct eontinuations 
of S(e la) will be ealled the lirst a derived set of S(e la) and will be denoted, 
as in P.V., by a{S(e la)}. The n-th a derived set of S(e la) is defined by 
induetion and is denoted by a{S(e la)}" (n = 2, 3, ... ). The inlinite a 
derived set of S(e la) is the union of all finite n-th a derived sets of S(e la), 
n = 1, 2, ... , and is denoted by a{S(e la)}"". Derived sets are infinite eon-
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figurations, while those considered in § 4, 5, 6 were finite configurations. 
Obviously a ~ {3 implies 

(7. 1) 

and hence, by complete induetion 

In § 8 we shall introduee eertain infinite-eonfiguration-invariants, 
namely eertain derived-set-invarianta, whieh will play a fundamental röle 
in our theory. To this effeet we first give in the present § the following 
definition. 

A property lP of ordered pairs of elements of R will be termed element­
symmetrie if and only if 

(7. a) (ldentity). 11 S(e!a) = S(alb), then the pair S(ela), S(alb) has the 
property lP. 

(7. {3) (Symmetry). 11 the pair S(ela), S(alb) kas the property lP, then the 
"inverse" pair S(alb), S(ela) has also the property lP. 

Here are two examples of element-symmetrie properties : the property 
of (7. a) being t direct continuations of one another, t fixed (i.e. S(e la), 

<t 
S(alb) has the property lP if and only if S(ela) ~S(alb), 0 < t ~ 1); 

t > 

(7. b) having intersecting (= non disjoint) n-th t derived sets, n, t fixed. 
The property (7. a) has a great importanee for our theory and will be 

called the t direct continuation property or simply the t property. Of course 
the noun "t property" in reality denotes an uncountable infinity of distinct 
element-symmetrie properties, namely one for eaeh fixed t of the un­
countable set 0 < t ~ 1. 

8. Basic integers. If lP is an element-symmetrie property, then we 
say that an integer m ~ 2 is a lP basic integer (where no ambiguity is 
possible merely basic integer) if and only if 

(8. a) there exista a positive integer n and a real number a(O < a ~ 1) 
such that 

(8.{3) lor every element S(ela)oIRin every sequenceolmelementa 
ol u{S(e la)}n, say S(ellal)' S(e2Ia2)' ... , Seem lam), there is a pair ol elements 
with distinct indices, say 

S(e" la), S(e.la,.), ft =I=- v (ft, v = 1, ... , m), 

which kas the property lP. 
The integer m is said then to correspond to n, a, lP and is denoted by 

men, a, lP). An integer m corresponding to n, a, lP is an invariant (in the 
sense of § 6) of the n-th a derived set. 

In the above definition the elements of the sequence S(ella.1),· .. , Seem lam) 
in (8. fJ) need not be all distinct. From the identity property (7. a) of lP 
follows, however. that m corresponds to n, a, lP if and only if, for every 

77 
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S(e la) of R, in every set of m distinct elements of a{S(e la)}" there is a pair 
of distinct elements with the property CP. 

If cP is the t property, then the integer m = men, a, CP) is said, as in 
P.V., to correspond to n, a, tand is denoted by men, a, t). 

Obviously 
(8. A). 11 m c6rresponds to n, a, CP, tken every integer m' greater tkan m also 
corresponds fo · n, a, CP. 

From (7.2) 
(8. B) 11 m corresponds to n, a, CP, and il n,. ~ n, al ~ a, tken m COT­

responds also to nl , al> cP (ol course nl = positive integer, al> 0). 
For the t property we have even the stronger form of (8. B) 

(8. B') 11 m corresponds to n, a, t, and il n l ~ n, al ~ a, ~ ;;?-: t, tken m 
corresponds also to nl> al' ~. 

9. Bases. The ehief importance of the cP basic integers is that they 
lead to the existenee of what we eaU cP bases. 

Let W be a set of distinet elements of Rand cP an element-symmetrie 
property. We say that the element S(e la) of R kas tke property cP witk 
respect to tke set W if and only if 
(9. a) tkere exists an element S(alb) ol W suck tkat tke pair S(ela), S(alb) 
kas tke property CP. 

If U is a set of distinet elements of R, then a subset V of U will be eaUed 
a cP basis of U if and only if 
(9. fJ) V consists ol distinct elements; 
(9. y) no pair ol distinct elements ol V kas tke property CP; 
(9. t5) every element ol U kas tke property cP witk respect to V. 

If cP is the t property, then we say, as in P.V., simply t basis. 
We now prove 

(9. A) Tkeorem. 11 m corresponds to n, a, CP, tken lor every element S(ela) 
ol R tkere exists a cp basis ol a{S(e la)}" consisting ol less tkan m distinct 
elements. 

Proof. Let S(ellal) be an arbitrary element of a{S(e la)}". Then either 
(1) every element of a{S(!,> la)}" has the property cP with respect to S(ell~) or 
(2) there exists an element S(e2Ia2) of a{S(e la)}" which has not the property 
cP with respect to S(ellal); in this last case S(e2Ia2) is distinct from S(ell~) 
(identity property (7. a) of CP!) and the set S(!hl~), S(e2Ia2) satisfies (9. y) 
(symmetry property (7. fJ) of CP!). If (1) is valid, S(ell~) eonstitutes already 
a cP basis of a{S(e la)}". If (2) is valid, then again either (1. 2) every element 
of a{S(e la)}" has the property cP with respect to S(ell~), S(e2Ia2) or (2. 2) 
there exists an element S(ea 13:1) of a{S(e la)}" distinet from S(ell~), S(e2Ia2)' 
such that the set S(ellal)' S(e2Ia2)' S(e313:1) satisfies (9. y). Thus again either 
we obtain a cP basis of a{S(e la)}" or we continue the operation. Since m 
eorresponds to n, a, CP, the iteration of this process must end af ter not 
more than m - 1 steps. 
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Remar k. In the definitions (8. a), (8. {J), (9. a), (9. {J), (9. y), (9.15) the 
symmetry property (7. {J) does not occur. Hence it is possible to define 
hasic integers and bases also for properties of ordered pairs of elements 
of R which satisfy (7. a) only but not (7. {J). An example of such a property 
is the property of being t direct continuation, t fixed, i.e. S(ela), S(O'lb) 

has the property rp if and only if S(ela) ~S(O'lb), 0 < t ~ 1. But then 
the theorem (9. A) is not more valid, i.e. for such "element-assymmetric" 
properties the existence of a basic integer does not imply the existence 
of a finite basis. For this reason we consider in the present paper only 
element-symmetric properties. rp denotes in the sequel always an element­
symmetric property. 

10. The main problem. In the present § we show that the following 
situation is of particular interest. 
(10. a) There is a {J such that all the basic integers m(n, {J, rp), n = 1, 2, ... , 
exist. 

Every {J satisfying (10. a) will be called a 1"emarkable value of rp (of 
course, to be quite exact, it is necessary to add: with respect to the local 
property IJ consid(!red). If a remarkable value of rp exists, rp is termed 
remarkable (with 1·espect to IJ). 

It is easy to show 
(10. A) Theo1"em. 1f a is a remarkable value of rp, then, tor every element 
S(g la) ot R, every subset V ot ,,{S(e la)}"" that satisfies the conditions (9. {J), 
(9. y) is countable. 

Proof. Associate with every element S(O'lb) of V one and only one 
positive integer nindicating that S(O' Ib) belongs to ,,{S(e la)}n, ,,{S(e laW+!, .. , 
but not to ,,{S(e la)}"-l, and caU it the order of S(O' Ib) with respect to S(e la). 
Since m(n, a, rp) exists, there is only a finite nu mb er of elements of V of 
order n(n = 1, 2, ... ), and therefore the elements of V can be enumerated 
according to their order. 

From (10. A) follows that, if a is a remarkable value of rp, then every 
rp basis of ,,{S(e la)}"" is countable. Another question is whether such a 
basis always exists. 
(10. B) Theorem. 1f a is a remarkable value of rp, then, for every element 
S(e la) ot R, there exists a (countable) rp basis ot ,,{S(e la)}"". 

Pro of. For an arbitrarily fixed positive integer n construct, by (9. A), 
a finite rp basis of a{S(e la)}", say S(O'l !bl ), S(0'2Ib2) ... , S(O'klbk). Consider 
then the subsequent derived set ,,{S(e la)}n+1 and, by iterating the operation 
of the proof of (9. A), complete the just constructed rp basis of ,,{S(e la)}" 
to a finite rp basis of ,,{S(ela)}"+l, say S(O'llbl), S(0'2Ib2)' ... , S(O'klbk)' 
S(0'k+1Ibk+1), ... , S(O'k+ llbk+ I), the elements S(O'k+1Ibk+1)' ... , S(O'k+ I!bk+,) 
being of order n + 1 with respect to S(ela) (cf. the proof of (10. A)). By 
continuing infinitely this process obtain a countable set V which obviously 
satisfies (9. {J), (9. y). Since every element of ,,{S(ela)}"" belongs to a certain 
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finite derived set a{S(e la)}n, V satisfies also (9. <5) with U = a{S(e la)}"". 
(10. C) The theorems (10. A), (10. B) remain valid ij we replaee in them 
a{S(e la)}"" by any one ot its subsets. 

The theorems (10. A), (10. B) show that, if a is remarkable value of lP, 
then the infinite a derived sets have a particularly simple "structure with 
respect to lP". This leads to consider the following problem as a fundamen­
tal one for our theory. 
(10. {J) The main problem. To tind neeessary and sutfieient eonditions tor 
a given element-symmetrie property lP to be remarkable (with respect to a 
given II). 

We will give in § 12 a partial solution of the main problem for the t 
property, namely two sufficient conditions for the t property to be remark­
able. The topological importance of such a solution becomes at once 
evident if one remarks the following fact which is an immediate conse­
quence of (2. A), (4. D). 
(10. D) For every a(O < a ~ I) and tor every element S(ela) ot R, the 
union ot the centres ot all elements S(alb) ot a{S(ela)}"" is both open and elosed 
in R. 

From (10. D) follows that for a eonneeted R the union of the centres 
of all elements of a{S(e la)}"" is already the whole space R. If then the t 
property is remarkable, it is possible, by (10. B), to cover R by a countable 
number of elements. 

The case of a non-connected R is more complicated and shall be dis­
cussed in detail in Part 11. 

The more important ofthe sufficient conditions of § 12 (namely (12. B)) 
will be derived from § 6 and from a general reasoning which will be deve­
loped in § 11. 

11. The condensation principle. Suppose that m corresponds to n, a, lP. 
Consider an indexed set of m 2 (not necessarily distinct) elements of 
a{S(e la)}n arranged as an array of m rows, say 

(11. I) (k=I,2, ... ,m) 

where Ski is written for Skl(edakZ ) (k, 1 = I, ... , m). By (8. {J) in every 
row there is a pair of elements with distinct indices which has the pro­
perty lP. Suppose the arrangement is such that in each row the pair 

(11. 2) (k = I, 2, ... , m) 

has the property lP. Again a pair of elements with distinct indices of the 
first column of (11. 2), say S11>S21' has the property lP. Then both pairs 
Sn, S12 and S11> S21 have the property lP. Thus we have proved: in every 
indexed set of m 2 elements of a{S(e la)}n there are three elements with 
distinct indices, say So, SI' S2' such that the both pairs So, SI and So, S2 
have the property lP. More generally we say that the elements SI' S2' ... , SI 
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can be f/J condensed to the element So if and only if the 1 pairs So, SI; 
So, S2; ... ; So, SI aU have the property f/J, and we prove, by complete 
induction, in exactly the same way as before. 

(11. A) Theorem. 11 m corresponds to n, a, f/J, then in every indexed set 
ol mi elements (l ~ 1) ol a{S(ela)}" there are (l+ 1) elements with distinct 
indices such that 1 arrwng them can be f/J condensed to the remaining (l + 1 )st. 

The reasoning by which (11. A) was proved and sometimes (11. A) itself 
shaU be caUed the condensation principle. 

For the t property the condensation principle has the following important 
eonsequence. 

(11. B) 11 m corresponds to n, a, tand 1 corresponds to 1, t, u, then mi 
corresponds to n, a, u. 

Proof. By (11. A) in every indexed set of mi elements of a{S(ela)}" 
there are (l + 1) elements with distinet indices, say So, SI' ... , SI' su eh 
that SI' S2' ... , SI can be "t condensed" to So' Sinee 1 corresponds to 
1, t, u, there are in the sequenee SI' ... , SI two elements with distinct indices 
which are u direct continuations of one another. 

Remark. In §§ 7 - 11 the triangle axiom has not been used. Rence 
all the definitions and results of these §§ are valid also for alocal spheri­
cally hereditary property [] associated with a semi-pseudo-metric in R. 

12. Sullicient conditions lor the t property to be remarkable. 
(12. A) Theorem. 11 a basic integer m(2, a, t) with 0 < t ~ a ~ 1 exists, 

then all basic integers m(n, a, t), n = 1, 2, ... , exist. 

Proof. We proceed by complete induetion by assuming that the 
basic integers m(l, a, t), m(2, a, t), ... , m(n - 1, a, t) (n - 1 ~ 2) all 
exist and we prove the existenee of the "subsequent" basic integer 
m(n, a, t). Sinee m = m(n - 1, a, t) exists, there exists, by (9. A), a finite 
t basis of a{S(elaW-1, say S(ell8.t), S(e2Ia2)' .. . ,S(eklak), (k < m). Sin ce 
t ~ a, we have, by (7. 1) 

and henee 

From (12. 1) follows that in any indexed set of km (not necessarily 
distinct) elements of a{S(e la)}" there are m elements with distinct indices, 
say S~, S~, ... , S~, which belong to the second a derived set of a single 
element of the just constructed t basis, say to a{S(ella1) }2. Since m = m(n­
- 1, a, t) (n - 1 ~ 2), m corresponds (by (8. B)) also to 2, a, t, and hen ce 
in the sequence S~, S~, ... , S~ there are two elements with distinct indices 
which are t direct continuations of one another. Thus km corresponds to 
n, a, t, and (12. A) is proved. 
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Oorollary. 11 CP/is a given t property (t lixed), then a n· a· s· c· lor a ~ t 
to be a remarkable value ol CPI is the existence ol the basic integer m (2, a, t). 

Notice that (12. A) is vaUd also for a II associated with a semi-pseudo­
metric. The triangle axiom (namely (6. B)) allows to establish the following 
result which can be considered as an improvement on (12. A). 

(12. B) Theorem. 11 a basic integer m(l, a, t) with 0 < t < a ~ 1 exists, 
then it is possible to determine [3 with 0 < [3 < a such that all basic integers 
m(n, [3, t), n = 1, 2, ... , exist. 

Proof. By (6. B) it is possible to determine to the pair t, a in (12. B) a [3 
with 0 < [3 < a such that if the elements SI' S2' Sa, S, form the con­
figuration 

(12. 2) 
<I 

S tI> " -S <fiS 
1 .... 1S 2 .... a- 4 

t> 

then SI' S4 are a direct continuations of one another. By hypothesis 
1 = m(l, a, t) exists, and hence, by (8. B), m(l, [3, t) exists also. Therefore 
we assume that m(l, [3, t), ... , m(n - 1, [3, t) all exist and we prove the 
existence of m(n, [3, t). Let m = m(n - 1, [3, t) and consider any sequence 
of m elements of p{S(e Ja)}n, say S~, S~, ... , S:". From the definition of the 
derived sets follows that there exists a sequence of m elements of 
p{S(eJa)}n-l, say S~/,S~/, .. . ,S;,:, such that S~ is [3 direct continuation of 
S~I for k = 1,2, ... , m. Since m corresponds to n - 1, [3, t, there are two 
elements with distinct indices ofthis last sequence, say S~/, S~/, which are t 
direct continuations of one another. Then the elements S~, S~/, S~/, S~ 

form the configuration (12.2). Rence S~, S~ are a direct continuations of 
one another. Thus we have proved that m corresponds to n, [3, a. Since, 
by hypothesis, 1 = m(l, a, t) exists, m' corresponds, by (11. B), to n, [3, t, 

and (12. B) is proved. 
The existence of m(2, a, t) in (12. A) and that of m(l, a, t) in (12. B) 

(a, t fixed) are properties "in the smaIl" of the T-space R considered, 
more exactly perhaps "properties in the smaIl of R with respect to II". 
The existence of all basic integers m(n, a, t), n = 1, 2, ... (a, t fixed) is a 
property "in the large", whose topological importanee be co mes parti­
cularly evident in the case of a connected R (cf. the end of § 10). We can 
say that (12. A), (12. B) derive from the above properties "in the smalI" 
of R the above property "in the large" of R. But, as will be discussed more 
in detail in Part Il, it will be probably very difficult to find a precise 
set-theorie topological equivalent for the above properties "in the smalI" , 
in other words, our theory is of purely metric nature. 

Oopenhagen, July 18, 1949. 
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