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Abstract. - The components of average velo city ahd the values of 

U2, V2, UV have been derived for a flat, not rotationally symmetrical 
stellar system with the mass concentrated in the centre. It is found that 

in the system considered U2, V2 and U Vare ofthe same order of magnitude. 

1. lntroduction. - In the present note we are going to consider a 
stellar system which in other respects is similar to the system of the 
preceding no te (1), ex cept th at the longitudes of the apcentra (00) are 
not distributed at random. Instead we suppose them for one half of the 
orbits to be equal to zero, and for the other half to be equal to n. In this 
way the most "oval" system possible for a given distribution of excen
tricities is obtained. In order to simplify the mathematical treatment 
we divide the whole system into two sub-systems, one with 00 = 0, the 
other with -Do = n. First we consider the two systems separately and then 
combine them in order to obtain the final results. 

2. The Motion ol lndividual Stars. - The motion of an individual star 
in the system is described by the same equations as in the previous note 
[equations (2, ll), (2, 12) and (2, 16)]. For the system with -Do = 0, we have 

(2, 1) / - -
R=- V~ (1-8

2 )sinD =-1 ··~ 1-8
2 sinD 

r V 1- (1-82) cos D r 8 --:1=+=2:==:( 1=~=S::::;2=) =si=n=2 =!=D 
8 

while for the system with 00 = n 

-

T = 1 ~. lil + (I-S2) cos ° =1/ ~ s11 + 2 (1;8
2

) COS2 t-D 



1212 

In both systems, neglecting third order terms of 1 - 8 2, 

(2,2) D = - rl8 

3. DenBity and ComponentB of Mean Velocity. - Let 

(3, 1) ! f (ro, T o, t~) dro dTo dio 

denote the number of stars with apcentric distances between ro and 
ro + dro, apcentric velocities between To and To + dTo, and the times of 
passage through the apcentron between to and to + dto, in the two systems, 
Do = 0 and Do = :Tl, separately. The integral of the expression (3, 1) over 
all values of ro, To and to gives the total number of stars in each of the two 
systems separately. 

In order to obtain the density per unit area, we change the variables 

ctnlrt 0/ 
syst.m. 

Fig. 1. The figure illustrates the ellipses going through one point, in the system 
treated in the second note (8 = 0.70, 0.75, ... , 0.95, 1.00; IJ = n/4). The greater 
axis of each ellipse coincides with the line of symmetry of the system. 

ro' To, to in (3, 1) into r, .0, s, then divide the expression by dr· rdD, and 
finally integrate over 8. First we have 

dro dTo dto = -D. dr d{} ds. 
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It will be seen that in the present case again the assumption 

(3, 2) 
\ f(ro, To, to) = N, from s = 1 to s = So 

l f(ro, To, to) = 0, for s < so, 

where N = const. and 1 - So ~ 1, leads to a constant density, in the 
limits of accuracy. We have, for each separate system, 

1 

(3,3) e=t N f (ljs)ds 

" 
i.e. 

In the complete system obtained by superposing the two systems with 
{}o = ° and {}o = n we have accordingly 

(3,4) 

or introducing 1 - s = u; 1 - So = uo' which are small quantities, 

(3, 5) 

The terms written down in this expression are not influenced by the terms 
neglected in equation (2,2). We see accordingly that the density is 
practically independent of rand {}, when the function f(ro, To, to) is defined 
by (3,2) .. 

The next task is to calculate '1' and R. We have 

(3,6) 

for the system with {}o = 0, and 

(3, 6)' 

for the one with {}o = n. The expressions can also be written in the form 
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1 

- lfp. I [ 1-81
• (1-81

)1 • 4 ] eT = iN V r 1 +---;s sm2 iO-i -8-' - sm iO + ... ds 
I. 

for the former system, and 

for the latter. For the system as a whole we obtain af ter some calculation: 

1 

- 1 lP I [ . 1-82 (1-8
2

)2 ] eT=N 1'; l+i---;s--é--
8
-.-(I+cos2 0)+ ... ds 

B, 

Here we may write 

1-82 

81 = 2 n-8) + 3 (1-8)2 + ... (1-.8
2
)2 = 4 (1--s)2 + ... 

8 

With 1 - s = a we then have: 

". 
eT=Nlq: I [1+a+(I-icos2 0)a2 + ... ]da 

o 

". 
e R = - N l!~ sin 2 0 I [a2 + ... ] da. 

o 

Integration gives: 

(3, 7) 
~ e ~ = N v;rr [ao +. i a~ + 1 (1-! cos2 0) a~ + ... ] 

IeR = -N v;rr t sm 2 0 [~ + ... ] 
from which, dividing by (3, 5): 

(3,8) 
~ v = T = v;rr [I-i- cos2 O· a~ + ... ] 

( u=R=-v;rr~sin20.a~+ .. . 
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Accordingly the deviation of the mean motion from a purely circular 
motion is of the second order of magnitude as regards to 0'0' 

4 .. The Quantities U2, V2, UV. - In order to calculate the quantities 

U2, V2 and UV, the individual veloeities may be expressed for the first 
system in the form 

T =1 '~s [1 + 1~82 sin2 ! {J + ... ] = .'" - [1--(1- s) cos {J + ... ] 
r 

l
ip.. 1-82 

R=- l -sm{J--+ ... 
r 8 

and for the second system in the form 

T =1 /~ s [ 1 + 1-:-/ cos2 t {J + ... ] = 1 ~ [1 + (1- s) cos {J + ... ] 

R = 'I ,p. . -Q 1-8
2 + - sIn 'U' -- ••• 

r 8 

For the first system we accordingly obtain, neglecting higher powers of 
l-s, 

(4, 1) V=T-T=-~(l-8)COS'!9; U=R-R=-2\!f:F(I-s)sin{J, 

and for the second system: 

(4,2) V = T-T=+ \!f:F (l-s) cos'!9; U = R-R=+ 2 Vï7ï1- (l-s) sin {J. 

The squares of U and V as well as the product U Vare accordingly the 
same in both systems. We obtain: 

l n U2 = 4 N 0'3 t sin2 {J' n V2 = -!- N 0'3 t cos2 {J 
" ,1 , U r '" a u r " 

e U V = t N aö t sin 2 {J 
r 

(4, 3) 

In order to obtain the values of U2, V2 and U V themselves, these express
ions have to be divided by N 0'0' The following list summarizes the values 
found ,in sections 3 and 4, up to the lowest power of 0'0: 

u = - ~ ~ ag sin 2 {J; v = ~ (1- ~ 0'5 cos2 {J); 
(4,4) 

5. Conclusions as Regards to Lindblad's Theory of the Formation of 
Spiral Arms. - The hydrodynamical equations of motion have already 
been written down in the first note, but we repeat them here: 

\

0 (ClU + u Clu + ~ Clu _~) + Cl (e U2
) +! Cl (eVV) + (lU2 _e V 2 

= Cltl> 
.. Cll Clr r Clf) r Cl r r Clf} r l' e ()r 

(5 1) (ClV +u Clv +~ClV + UV)+ Cl (e VV) + ! Cl (e V2 ) + 2 eUV = 0 , I e Cll' Clr r Clf) r Cl l' l' Cl f} r 

Cl!! + Cl (eu) + ! Cl (e v) + (lU = 0 
Cll ()r r Clf) l' . 
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The last equation is, of course, the equation of continuity. These equations 
are satisfied by the values (4,4), similarly as they are satisfied by the 
values (4,4) of the previous note. Now equations (4,4) show that by 

making the system sufficiently "oval", the quantities Uz, VZ, UV will be 

of equal order of magnitude. Accordingly U V cannot be neglected. 

Besides, there is a certain ratio between Uz and VZ, so that we are not 

allowed to choose for instance Uz = V2. If, however, we should choose 

UV = 0 and U2 = VZ, this would be equivalent to introducing extra 
forces on the right hand side of the equations. The consequence would be 
that i)ul;,t and ;,vl;,t would generally not remain zero. The mass elements 
can then be expected to follow spirals around the centre. Starting from 
a slightly oval system, we apparently could obtain spiral arms. 

One might think that this conclusion does not necessarily have relation 
to LINDBLAD'S theory of the formation of spiral arms, because we have 
considered only the particular case in which the whole mass is concen
trated in the centre. Spiral nebulae, according to observation, rotate 
nearly as rigid bodies (2), and must therefore have a quite different 
distribution of density. However, we have been able to show that at least 
in one special case spi ral arms can be expected to appear precisely with 
the assumptions which have been made by LINDBLAD, but without any 
distnrbance in the density distribution. 

It should moreover be observed that if we calculate the orbit of a 
star in the system, whatever is the distribution of the density, we calculate 
u + U and v + V as a whoie. A priori there should be no special conditions 

for U and V (such as U V = 0, U2 = V2) as long there are no collisions. 
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