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This paper consists of two parts. In part I we study an invariant additive
set function of sets of real numbers. As an application of the main theorem
we obtain the distribution modulo 1 of functions of a certain class. In
part IT we prove the non-existence of a distribution modulo 1 of functions
of another class.

1. The invariant finitely additive set function v.

The space R of the real numbers is group space of the group @ of trans-
lations (z — x + b). A set & of subsets of R is called an invariant class of
sets, if:

(1) 8,8,€8, 8; NS,= 0 implies S;+ S, € S;
(2) S e@, gel implies g-S e G.

A set function defined on & is called an invariant finitely additive set-
function (v), if
(B) 8, N8;=0, 8,8, € G, implies »(8; + 8,) =v(8;) + »(8y);

(4) Se @, ge@, implies »(g-S)=»(S).

We call v an invariant semi-distribution on &, if moreover:

(5) Se &, implies »(S) = 0;
(6) Re @, and v(R)=1.

Example 1. Throughout the paper S(z) (z > 0) will denote the
Lebesgue measure (if existing) of the intersection of a set of real numbers S
and the segment 0 — z. Let @ be the class of the following sets: a) the sets
that are bounded by a greater number (bounded above); b) the sets for
which lim,_,, S(z)/x exists; ¢) any set which is a sum of a set of a) and a
set of b).

Throughout the paper »(S) will denote the invariant semi distribution
on the class of sets &, defined by: (3); »(S) = 0 if § is bounded above;

»(8) = lim,_,, S(x)/x if this exists. We observe that (3) is not contradicted,
(5) and (6) are obviously fullfilled, and so we only need to prove (4): If g is
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a translation over a distance d < 0, and § is a set mentioned under b), then

S(z+d)—S(d) _

v(g-8) = lim, o T _fim 2

Li

m, . S(x+d) =lim,_, S(T“’) = »(8) q.ed.

1A

Here, and in the sequel, we restrict to proofs concerning sets mentioned
under b); the proofs for the other sets are simple consequences.

Example 2. Let a > 1, and let &* be the class of sets for which

S(ax) —S(x)
ar—zx

def
(»=)lim,_ exists.
S(ax) — S(x) denotes the Lebesgue measure of the intersection of S and
the interval (x — ax). _ ,

The best way to show that also »* is a semi distribution on &¢, is to
prove the

Theorem 1. &°= &, »* =v, for any a > 1.
First we prove a lemma which we will also need later on.

Lemma. Let S be a subset of R, and a > 1. If for any ¢ > 0, N(¢)
exists such that x > N implies
S(ax) —S(x)

ar—=x

(7) vi—e < < -t

then M(e, v, v") exists, such that y > M implies

(8) y'—2e<%’”<w+2e.
Proof: For z > N, we conclude from (7)

S(ak+1.x2) —S(ak.x)
ak+l.p —ak.x

Y —e <

<"+ ¢, k=0,1,2,...
or
(v —e) (AF*1.x—aF.x) < S(a** 1. x)—-8(a*-2) < (V" + ¢) (a*T'. z—ak . x).
Summation over k= 0,1,2,...,n — 1, yields
(v'—e)(a"-x—zx) <S(@a"-z2)—8S(x) < (» +¢) (a*z—2x)

or if y = a"x:

S(y) —S(a—"-y)
y—any

Y —e < <"+ &.

This holds in particular for any » > 0 and N < a~™y < a . N2. It is now
possible to change y continuously from N to infinity, while leaving these
conditions fullfilled (by shifting the integer n). Hence it follows because
a "y and S(a "y) are bounded, that for y sufficiently large, say
y > M (¢, v',v") (8) holds.
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Proof of theorem 1:

a. Suppose S € % From the definition in example 2, and the lemma,
it follows immediately, that also S € &, and »*(S) = »(S).

b. Suppose S &, S is a set as mentioned in example 1 under b)
wW8) = ».

The function N(z) defined for > 0 exists, such that if 2, > z; > N(z),
7 > 0 being fixed, then

(7_77) xi<S(xi) < (1’+1}) x;, = 1: 2.
or
(v—n) 2o— (v + 1) 2, < S(x) —8(2,) < (v + 1) 2, —(v—1p) 2,
P Z9+2, < S(zg) —S(zy) <y Zgt2,

T—T, Tg— @y Ty—,

Let = a.2,=a-z, a=1+4+ 6> 1, and ¢ > 0. Choose
(/]
T<515°
Then
S(ax) —S(x)
ar—x

r—e < <v+e (x > N(n) = N(n(e)).

This holds for any ¢ > 0 and =z > N(#(¢)), hence:

def _
¥ (8) = lim, o, =50
and 8 € &% The theorem follows.

Example 3. Let the function y = f(z) be defined and be monotonously
increasing for z > z,, and f(x) < f(x,) or not defined for z << z,. Let
&* = f~1(S) consist of the subsets of R that are the sum of a bounded
(above) set and the image under f~! of a set of & (example 1) (it is clear
that choice of a larger number then z,, instead of x,, has no influence on
the result ©*. The function f(z) is only of interest for values x > the
arbitrarily large value zy(!)).

An additive set function »* on &* is defined by (3) and: v*(8*) = 0 if
S*(e &*) is bounded; if S* = f~1(S) then .

v¥(8*) = v*(f7(8)) = »(S) = »({(8*)).

Notation: S* = f~YS), v* =».f.

The following theorem gives a condition under which the setfunction
just defined is an invariant semi distribution, and it is even the same as »
in example 1.

Main Theorem 2:
If a > 0, x, is a constant, f(z) s bounded above or not defined for x < x,,
f(x) is differentiable for x = x,, and

(9) lim, ., 28— K >0,

—>00 a.xa
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then ©*=f"18)=& and v*=v.f=v.; or in words :@ then the sems
distribution v 18 invariant under the ‘‘transformation’ f.

Proof: Let K = 1 (a restriction not essential for the proof). From (9)
follows the existence of N'(e) > z,, defined for £ > 0, such that x > N'(e)
implies:

(10) a(l —e) 221 < fl(x) < a(1 + ) 271,
We integrate from N’ to z and replace z by «:
(1—eg) 2* + Oy < flx) — f(N') < (1 + &) 2" + C,.
Therefore N”"(¢) > N'(¢) exists, such that xz > N"(¢) implies (10) and
(11) (1—2&) 2z < f(x) < (1 + 2¢) 2~

Now let »* = »*(S*) be the value of the setfunction »* = ».f at the
set S* = f~1(8) (8 = f(S*)). Then because »* = lim,_,,, S(f(x))/f(x), N°x)
defined for 5 > 0 exists, such that x > N%z), a > 1, implies

(v*—1) Ha2) < S(f(az)) < (* + ) f(a),
0*+m) @) > 8(f@) > o*—n) f(@),
vt —n) f(az)—(»* + ) f(z) <S(f(az)) —8(f(x)) < (v* + n) f(az)—(v*—) f(x),

 fan) @) Sfax)—SU() Ha2)+1(z)
(12) LA T ) et <" T fea—fa)

From now on we suppose a = 1. The proof of the other case 0 < a < 1
is obtained by obvious alterations.

The derivative of the function f in the interval x — ax (x > N"(¢) and
x> N%n5)) is bounded by a(l — &) z*~! and a(l + &) (ax)*"! (compare
(10)). Therefore f(axz) — f(x) is bounded by (!):

(13) a(l—e) 2°7! (ax—x) and a(l + &) (az)*"?! (ax—2x).
The Lebesgue measure S(f(axz)) — S(f(x)) is bounded by (!):

(14) a(l—e) 2*~1 (S*(ax) —S*(z)) and a(l + &) (ax)*~! (S*(ax) —S*(x)).

n<

From (13) and (14) we get:

1—¢ 1_oS*ax)-8%2) _ S(flax))—S(f(xz)) _ 1te o, SHaz)—8*()

(15) <

1+e ar—zx flax)—f(x) 1—e ar—x
From (11) and (13) we get:
f(az)+f(z) (14+2¢) [(az)et2] 142 a4l
(16) flaz)—f(z) a(l—e) z°-1 (az—=x) 1~ a(l—e) a—1 1

We now choose for any a > 1, ¢ > 0, = 7 (a, ¢) so small that the right
hand side of (16) is less then ¢. This inequality is used in (12) and
combining the result with (15) we obtain:

S*(ax)—S*(x) < 1+e

1= iapye__
(17) _ N e —

a1 (v* + g).



1394

Applying the lemma we conclude ta the existence of M(a, ¢'), defined
for all a > 1, ¢ > 0, such that 2 > M(a, ¢'), a, ¢ being fixed, implies

veal-o—g <S {=) < a* lys ¢
hence
. S*(z)
llnl‘c_+°° T = p*,

By definition this limit is »(S*), and therefore S* € ©. It follows that
©* C ©. Because f(z) has an inverse for > z,, which obeys conditions
(9) (with other constants), also & C &*. Therefore ©* = &, and for any
S e & :v¥8) =»8). q.ed.

Application.

Let s be a Lebesgue measurable (L.m.) subset of the interval 0 < z < 1,
with measure u(s). Let S = S(s) be the set of all numbers x that differ an
integer from a number in the set s. Obviously »(S) = u(s).

Let f(z) be a function and let S*(s) = f~1(S) be the set of all « for which
f(x) is a number in the set S. If »(S*) = »(S*(s), f) = »(s, f) exists for any
L.m. set s, and »(s, f) is an infinitely additive setfunction, then f () is said
to possess the C™-distribution mod 1: »(s, f). If »(s, f) exists for any s that
is a finite sum of intervals, and »(s, f) is finitely additive, then f(z) is said
to possess the Cl-distribution mod 1: v(s, f). If the distribution mod 1
¥(8, f) coincides with the Lebesgue measure u(s), then the distribution is
called uniform.

As a corrollary of theorem 2 we now have:

Theorem 3 (KurpErRS-MEULENBELD). If f(x) obeys the conditions of
theorem 2 (in particular (9)), then f(z) is C™ uniformly distributed mod 1. 1)

Proof: If s is L.m. then »(s, f) = »(S8*) = »(S) = u(s).

II. Some functions which do not possess a C'-distribution mod 1.

In theorem 2 we proved the invariance of the finitely additive set-
function »(S) under a transformation which is in a certain sense not much
different from z — 2%, a > 0. It is easily seen that »(S) is not invariant
under x — e® or the inverse x — In . For these functions the conclusion
of theorem 3 is not a corrollary of theorem 2. e* happens to be C™-uniformly
distributed mod 1; In x not. We prove:

Theorem 4. If M,L > 0 are constants, f(x) is continuous, im, . f(x) =
=o0?), and if y > B> M, f(y) — [(B) > 1/4 implies
fy)—=HB)
18 oA itV
(18) plo=P < 1,
then f(x) does not possess a C'-distribution mod 1.

1) For a =1, this is, but for a condition of monotony which I do not need,
a theorem of Kurpers ([2] Ch. ITI, th. 6). For 0 < a < 1, KurpErs and MEULENBELD
recently gave a proof of an n-dimensional generalisation of th. 3 ([4] th. IV).

?) This condition is superfluous, but it is convenient in the proof.
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Proof: Suppose the finitely additive setfunction »(s) = »(s, f) is the
C'-distribution mod 1 of the given function f(x). We will show that the
assumption of its existence leads to a contradiction.

Let s be the interval of numbers x which obey 0 < p <z < ¢ <1,
g —p=>b>1/4. 8 =8(s) and 8* = f~1(S) are defined as before.

By definition N(e) exists, such that x > N(¢) implies

(19) e —e< @ <o) e

Let also N(¢) > M.

Next we choose two numbers # and y > f > N(e), such that: y is the
smallest number greater than f, for which f(y) = ¢ mod 1; f is the greatest
number smaller than y, for which f(f) = p mod 1; f(y) > f(f). Because
f(z) is continuous:

8*(y) = S8*(B) + (y—5).
In view of (19):

(20) 8*y) > () —e) B+ (v —B) = v —(1—2(s) + &) §.
Application of (18) yields:
% <L or < LL-;I) Y.

Substitute in (20), divide by y, and rearrange:

S*() (1—v(s)) b L
(21) —;—>V(8)+‘—m——8m.

If »(s) # 1, then ¢ can be choosen so small, and y > N(¢) exists, such that

S*(v)
4

> p(8) + ¢

in contradiction with (19).
Hence for all intervals like s we get the same value »(s) = 1 so that
7(s) cannot be an additive setfunction . q.e.d.

Ezxamples:

1. If f(zx) is differentiable and z.f'(x) (x > 0) is bounded, then f(x)
does not possess a CI-distribution mod 1. In particular f(z) is not uni-
formly distributed, which was also proved by Kuirers and MEULENBELD
([4] th. II). E.g. In 2, In (x 4 sin « + 1), have no C'-distribution mod 1.

2. A step function with discontinuities at the integervalues of x, can
be approximated by a continuous function in such a way, that the measure
of the set of all x for which the values of the two functions differ, is
bounded. We are therefore able to prove: If the sequence n(f(n + 1) —
— f(n)) (n > 0) is bounded, then the function f(z), defined by f(z) = f(n)
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if n <z <n+ 1, does not possess a C'-distribution mod 1; in other
words: f(n) does not possess a C-distribution mod 1.
Compare [1] E.g. f(n) = In n.

July 1950.

1]
(2]
(3]
(4]
[5]

Technische Hogeschool, Delft
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