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This paper consists of two parts. In part I we study an invariant additive 
set function of sets of real numbers. As an application of the main theorem 
we obtain the distribution modulo 1 of functions of a certain class. In 
part IJ we prove the non-existence of a distribution modulo 1 of functions 
of another class. 

1. The invariant finitely additive set function v. 

The space R of the real numbers is group space of the group G of trans­
lations (x ~ x -I- b). A set 6 of subsets of Ris called an invariant class of 
sets, if: 

(1) 

(2) 

8 1,82 E 6,81 n82 = 0 implies 8 1 + 8 2 E 6; 

8 E 6, g EG implies g.8 E 6. 

A set function defined on 6 is called an invariant finitely additivc set­
function (v), if 

(3) 8 1 n 8 2 = 0, 81> 8 2 E 6, implies v (81 + 8 2) = v (81) + V (82); 

(4) 8E6, gEG, implies v(g.8)=v(8). 

We call v an invariant semi-distribution on 6, if moreover : 

(5) 

(6) 

8E 6, implies v(8) > 0; 

RE 6, and 1I(R) = l. 

Example 1. Throughout the paper 8(x) (x > 0) will denote the 
Lebesgue measure (if existing) of the intersection of a set of real numbers 8 
and the segment 0 - x. Let 6 be the class of the following sets: a) the sets 
that are bounded by a greater number (bounded above); b) the sets for 
which limx-->oo 8(x)jx exists; c) any set which is a sum of a set of a) and a 
set of b). 

Throughout the paper 11(8) will denote the invariant semi distribution 
on the class of sets 6, defined by: (3); 11(8) = 0 if 8 is bounded above; 
11(8) = lim",--+oo 8(x)/x if this exists. We observe that (3) is not contradicted, 
(5) and (6) are obviously fullfilled, and so we only need to prove (4): If gis 
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a t,ranslation over a di stance d < 0, and 8 is a set mentioned under b), then 

( 8) - r (g.S) (x) _ r S(x+d) -S(d) _ 
v g. - lmJ:~OO x - lm:t--+OO x -

I· S(x+d) - I' S(x) - (8) d 
Im",--+oo -:c- - lm",--+oo X - v q.e.. 

Here, and in the sequeI, we restrict to proofs concerning sets mentioned 
under b); the proofs for the óther sets are simpie consequences. 

Example 2. Let a> 1, and let @Sa be the class of sets for which 

"(" a uef) r S(ax) -S(x) . t 
v = lm",--+oo ax-x eXlS s. 

8(ax) - 8(x) denotes the Lebesgue measure of the intersection of 8 and 
the interval (x - ax). 

The best way to show th at also va is a semi distribution on @Sa, is to 
prove the 

Theorem 1. @Sa = @S, VU = v, for any a > 1. 
First we prove a lemma which we wiIl also need later on. 

Lemma. Let 8 be a subset of R, and a> l. 11 for any e> 0, N(e) 
exists such that x > N implies 

(7) , < S(ax) -S(x) " . 
v - ê ax _ x < v -t- e, 

then M(e, Vi, v") exists, such that y> M implies 

(8) v' -2e < S(y) < v" + 2e. 
y 

Proof: For x> N, we conclude from (7) 

1 S(ak+l.x) -S(ak.x) " 
v -e< Hl k <v +e, a ·x-a·x 

k= 0, 1, 2, ... 

or 

(v' -e) (aHl . x-ak • x) < 8(ak+l. x) --8(a". x) < (v" + e) (ak+l. x-ak • x). 

Summation over k = 0, 1,2, ... , n - 1, yields 

(v'-e) (an.x-x) <8(a".x)-8(x) < (vh + e) (a".x-x) 

or if y = an. x: 
, S(y) -S(a -n .y) 

v-e< <v"+e. y-a-n.y 

This hoids in particular for any n > ° and N < a-no y < a· N2. It is now 
possibie to change y continuously from N to infinity, while Ieaving these 
conditions fullfilled (by shifting the integer n). Hence it follows because 
a-no y and 8(a-n • y) are bounded, that for y sufficientIy large, say 
y > M (e, v', v") (8) holds. 
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Proof of theorem 1: 
a. Suppose S ESa. From the definition in example 2, and the lemma, 

it follows immediately, that also SE S, and v"(S) = v(S). 
b. Suppose SE S, S is a set as mentioned in example 1 under b) 

v{S) = v. 
The funetion N(TJ) defined for TJ > 0 exists, sueh that if x2 > XI> N(TJ), 

TJ > 0 being fixed, then 

i= 1,2. 
or 

Let x2 = a,xI = a·x, a = 1 + ~ > 1, and e> O. Choose 

ö 
TJ<2+ö e. 

Then 

< S(ax) -S(x) < + v-e v e 
ax-x 

(x> N(TJ) = N(TJ(e)). 

This holds for any e> 0 and x> N(TJ(e)), henee: 

a(s) def li S(ax) -S(x) _ 
v - m.,. ... oo ax-x - v 

and SE Sa. The theorem follows. 

Example 3. Let the funetion y = f(x) be defined and be monotonously 
inereasing for x> xo, and f(x) < f(xo) or not defined for X < Xo' Let 
S* = f-l(S) eonsist of the subsets of R that are the sum of a bounded 
(above) set and the image under f- I of a set of S (example 1) (it is clear 
that ehoiee of a larger number then xo' instead of xo' has no influenee on 
the result S*. The funetion f(x) is only of interest for values x> the 
arbitrarily large value xo(!)). 

An additive set funetion v* on S* is defined by (3) and: v*(S*) = 0 if 
S*(E S*) is bounded; if S* = f-I(S) then . 

v*(S*) = V*U-l(S)) = v(S) = v(f(S*)). 

Notation: S* = f-I(S), v* = V· f. 
The following theorem gives aeondition under whieh the setfunetion 

just defined is an invariant semi distribution, and it is even the same as v 

in example 1. 

M ain Theorem 2: 
11 a > 0, Xo is a constant, f(x) is bounded above or not delined for X < xo' 

I(x) is dilferentiable lor x >xo, and 

(9) 
. f'(x) 

limz--..oo a.xa- 1 = K > 0, 
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tken 6* = 1- 1(6) = 6 and v* = v'l = v· ; or in words : then the semi 
distribution v is invariant under the "translormation" I. 

Proof: Let K = 1 (a restriction not essential for the proof). From (9) 
follows the existence of N'(e) > xo, defined for e > 0, such that x > N'(e) 
implies: 

(10) a(I-e) x"-l < I'(x) < a(I + e) x"-l. 

We integrate from N' to zand replace z by x: 

(I-e) x" + 01 < I(x)-/(N') < (1 + e) x" + O2, 

Therefore N"(e) > N'(e) exists, such that x> N"(e) implies (10) and 

(11) (I-2e) x" < I(x) < (1 + 2e) x". 

Now let v* = v*(S*) be the value of the setfunction v* = v'l at the 
set S* = 1-1(S) (S = I(S*)). Then because v* = lim.,.....oo S(f(x))lf(x), N°(TJ) 
defined for 7J> 0 exists, such that x> N°(TJ), a> 1, implies 

(v·_TJ) I(ax) < S(f(ax)) < (v* + "I) I(ax), 

(v·+TJ)/(x) >S(f(x)) > (v*-TJ)/(x), 

(v*-TJ)f(ax)-(v* +TJ)/(x) <S(f(ax))-S(f(x)) < (v* + "I) I(ax)-(v*-TJ) I(x), 

( 12) v*_f(axl+f(x) < S(f(ax))-S(f(x)) < v* + f(ax)+f(x) 
.. f(ax)-f(x) "I f(ax)-f(x) f(ax)-f(x) "I. 

From now on we suppose a ::::::: l. The proof of the other case 0 < a < 1 
is obtained by obvious alterations. 

The derivative of the function I in the interval x - ax (x> N"(e) and 
x> N°(TJ)) is bounded by a(I - e) x"-l and a(l + e) (ax)a-l (compare 
(10)). Therefore I(ax) -.f(x) is bounded by (!): 

(13) a(I-e) x"-l (ax-x) and a(I + e) (ax)a-l (ax-x). 

The Lebesgue measure S(f(ax)) - S(f(x)) is bounded by (!): 

(14) a(I-e) x"-l (S*(ax)-S*(x)) and a(I + e) (ax)a-l (S*(ax)-S*(x)). 

From (13) and (14) we get: 

(15) l-e a1-a S*(ax)-S*(x) < S(f(ax»-S(f(x» < l+e aa-l S*(ax)-S*(x) 
l+e ax-x f(ax)-f(x) l-e ax-x 

From (11) and (13) we get: 

(16) f(axl+f(x) (1+2e) [(ax)a+xa] 1+2e aa+l 
~f(-ax-7-)-':"".;':'f(x"":") "I < a(l-e) xa 1 (ax-x) "I = a-(-I--E) -a--l "I. 

We now choose for any a > 1, e> 0, "I = "I (a, e) so small that the right 
hand side of (16) is less then e. This inequality is used in (12) and 
combiningthe result with (15) we obtain: 

(17) I-El_a(. )<S*(ax)-S*(x)<I+E a-l(*+) 
. l+e a v -e ax-x l-E a v e. 



Applying the lemma we · conclude to the existence of M(a, e'), defined 
for all a> 1, e' > 0, such that x> M(a, e' ), a, e' being fixed, implies 

hence 

S*(x) '11* al-a_ e' < -- < aa-l v· + e' 
x 

1. S*(x) * 
lm.c-+oo -- = v . x 

By definition this limit is '11(8*), and therefore 8* E 6. It follows that 
6* C 6. Because I(x) has an inverse for x > xo, which obeys conditions 
(9) (with other constants), also 6 C 6*. Therefore 6* = 6, and for any 
S E 6 : '11*(8) = '11(8). q.e.d. 

Application. 
Let s be a Lebesgue measurable (L.m.) subset ofthe interval 0 < x < 1, 

with measure #(s). Let 8 = 8(s) be the set of all numbers x that differ an 
integer from a number in the set s. Obviously '11(8) = #(s). 

Let I(x) be a function and let 8*(s) = 1- 1(8) be the set of all x for which 
I(x) is a number in the set 8. If '11(8*) = v(8*(s), f) = 'II(s, f) exists for any 
L.m. set s, and '11 (s, f) is an infinitely additive setfunction, then I (x) is said 
to possess the CIII-distribution mod 1: 'II(s, /). If 'II(s, f) exists for any s that 
is a finite sum of intervals, and 'II(s, f) is finitely additive, then I(x) is said 
to possess the CI-distribution mod 1: 'II(s, f). If the distribution mod 1 
'II(s, f) coincides with the Lebesgue measure #(8), then the distribution is 
called unilorm. 

As a corrollary ol theorem 2 we now have: 

Theorem 3 (KUIPERS-MEULENBELD). 11 I(x) obeys the ronditions ol 
theorem 2 (in particular (9», then I(x) is CUl unilormly distributed mod l. 1) 

Proof: If s is L.m. then 'II(s, f) = '11(8*) = '11(8) = #(s). 

11. 80me lunetions which do not possess a CI-distribution mod l. 
In theorem 2 we proved the invariance of the finitely additive set­

function '11(8) under a transformation which is in a certain sense not much 
different from x -+ ~, a > O. It is easily seen that '11(8) is not invariant 
under x -+ eX or the inverse x -+ In x. For these functions the cónclusion 
of theorem 3 is not a corrollary of theorem 2. eX happens tobe CIII-uniformly 
distributed mod 1; In x not. We prove: 

Theorem 4. 11 M, L > 0 are constants, I(x) is continuous. lim.,.....oo/(x) = 

= 00 2) , and il y > f3 > M, I(y) - 1(f3) > 1/4 implies 

( 18) f3 f(y)-f(f3) < L 
y-f3 ' 

then I(x) does not possess a CI-distribution mod 1. 

1) For a ~ 1, this is, but for a condition of monotony which I do not need. 
a theorem of KUIPERS ([2] eh. lIl, th. 6). For 0 < a < 1, KUIPERS and MEULENBELD 

recently gave a proof of an n·dimensional generalisation of th. 3 ([4] th. IV). 
2) This condition is superfluous, but it is convenient in the proof. 
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Proof: Suppose the finitely additive setfunetion '1'(8) = '1'(8, f) is the 
CI-distribution mod 1 of the given funetion f(x). We will show that the 
assumption of its existenee leads to a eontradietion. 

Let 8 be the interval of numbers x whieh obey 0 < p < x < q < 1, 
q - P = b > 1/4. 8 = 8(8) and 8* = f-l(8) are defined as before. 

By definition N(e) exists, sueh that x> N(e) implies 

(19) 
S*(x) 

'1'(8) - e < ----x- < '1'(8) + e. 

Let also N(e) > M. 
Next we ehoose two numbers (3 and y> (3 > N(e), sueh th at : y is the 

smallest number greater than (3, for whieh f(y) = q mod 1; (3 is the greatest 
number smaller than )', for whieh 1((3) - 1J mod 1; f(y) > 1((3). Beeause 
f(x) is continuous : 

8*(y) = 8*((3) + (y-,6). 

In view of (19): 

(20) 8*(y) > ('V(8)-e) (3 + (y-(3) = y-(I-·'V(8) + e) (J. 

Applieation of (18) yields: 

{Jb L (3 E 
y-{J < or < L+b y. 

Substitute in (20), divide by )', and rearrange: 

(21) S*(y) ( ) + (I-v(s)) b L 
-y- > 'V 8 L+b -e L+b' 

If '1'(8) *- 1, then e can be ehoosen so small, and y > N(e) exists, sueh that 

in contradiction with (19). 

S*(V) -' > '1'(8) + e 
y 

Henee for all intervals like 8 we get the same value '1'(8) = 1 so that 
Y(8) eannot be an additive setfunction . q.e.d. 

Examples: 

1. If f(x) is differentiable and x· f'(x) (x > 0) is bounded, then f(x) 
does not possess a CI-distribution mod 1. In partieular f(x) is not uni­
formly distributed, whieh was also proved by KUIPERS and MEULENBELD 

([4] th. II). E.g. In x, In (x + sin x + 1), have no CI-distribution mod 1. 

2. A step function with diseontinuities at the integervalues of x, ean 
be approximated by a continuous funetion in sueh a way, th at the measure 
of the set of all x for whieh the values of the two functions differ, is 
bounded. We are therefore able to prove: If the sequenee n(f(n + 1) -
- f(n)) (n> 0) is bounded, then the funetion f(x), defined by f(x) = f(n) 
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if n ~ x < n + 1, does not possess a CI-distribution mod 1; in other 
words: f(n) does not possess a CI-distribution mod l. 

Compare [1] E.g. f(n) = In n. 
Technische Hogeschool, Delft 

July 1950. 
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