DISTRIBUTION MODULO 1 OF SOME CONTINUOUS FUNCTIONS

BY

N. H. KUIPER

(Communicated by Prof. W. VAN DER WOUDE at the meeting of Sept. 30, 1950)

This paper consists of two parts. In part I we study an invariant additive set function of sets of real numbers. As an application of the main theorem we obtain the distribution modulo 1 of functions of a certain class. In part II we prove the non-existence of a distribution modulo 1 of functions of another class.

I. The invariant finitely additive set function v.

The space R of the real numbers is group space of the group G of translations $(x \to x + b)$. A set \mathfrak{S} of subsets of R is called an *invariant class of sets*, if:

(1)
$$S_1, S_2 \in \mathfrak{S}, S_1 \cap S_2 = 0 \text{ implies } S_1 + S_2 \in \mathfrak{S};$$

(2)
$$S \in \mathfrak{S}, g \in G \text{ implies } g \cdot S \in \mathfrak{S}.$$

A set function defined on \mathfrak{S} is called an *invariant finitely additive set-function* (v), if

(3)
$$S_1 \cap S_2 = 0$$
, $S_1, S_2 \in \mathfrak{S}$, implies $\nu(S_1 + S_2) = \nu(S_1) + \nu(S_2)$;

(4)
$$S \in \mathfrak{S}, g \in G, \text{ implies } \nu(g \cdot S) = \nu(S).$$

We call ν an invariant semi-distribution on \mathfrak{S} , if moreover:

(5)
$$S \in \mathfrak{S}$$
, implies $\nu(S) \geq 0$;

(6)
$$R \in \mathfrak{S}$$
, and $\nu(R) = 1$.

Example 1. Throughout the paper S(x) (x > 0) will denote the Lebesgue measure (if existing) of the intersection of a set of real numbers S and the segment 0 - x. Let $\mathfrak S$ be the class of the following sets: a) the sets that are bounded by a greater number (bounded above); b) the sets for which $\lim_{x\to\infty} S(x)/x$ exists; c) any set which is a sum of a set of a) and a set of b).

Throughout the paper $\nu(S)$ will denote the invariant semi distribution on the class of sets \mathfrak{S} , defined by: (3); $\nu(S) = 0$ if S is bounded above; $\nu(S) = \lim_{x \to \infty} S(x)/x$ if this exists. We observe that (3) is not contradicted, (5) and (6) are obviously fullfilled, and so we only need to prove (4): If g is

a translation over a distance d < 0, and S is a set mentioned under b), then

$$v(g \cdot S) = \lim_{x \to \infty} \frac{(g \cdot S)(x)}{x} = \lim_{x \to \infty} \frac{S(x+d) - S(d)}{x} = \lim_{x \to \infty} \frac{S(x+d)}{x} = \lim_{x \to \infty} \frac{S(x)}{x} = v(S) \text{ q.e.d.}$$

Here, and in the sequel, we restrict to proofs concerning sets mentioned under b); the proofs for the other sets are simple consequences.

Example 2. Let a > 1, and let \mathfrak{S}^a be the class of sets for which

$$(v^a \stackrel{\text{def}}{=}) \lim_{x \to \infty} \frac{S(ax) - S(x)}{ax - x}$$
 exists.

S(ax) - S(x) denotes the Lebesgue measure of the intersection of S and the interval (x - ax).

The best way to show that also v^a is a semi distribution on \mathfrak{S}^a , is to prove the

Theorem 1. $\mathfrak{S}^a = \mathfrak{S}$, $\nu^a = \nu$, for any a > 1. First we prove a lemma which we will also need later on.

Lemma. Let S be a subset of R, and a > 1. If for any $\epsilon > 0$, $N(\epsilon)$ exists such that x > N implies

(7)
$$v' - \varepsilon < \frac{S(ax) - S(x)}{ax - x} < v'' + \varepsilon,$$

then $M(\varepsilon, \nu', \nu'')$ exists, such that y > M implies

(8)
$$v' - 2\varepsilon < \frac{S(y)}{y} < v'' + 2\varepsilon.$$

Proof: For x > N, we conclude from (7)

$$\nu'-\varepsilon<\frac{S(a^{k+1}\cdot x)-S(a^k\cdot x)}{a^{k+1}\cdot x-a^k\cdot x}<\nu''+\varepsilon, \qquad k=0,\,1,\,2,\dots$$

or

$$(\nu'-\varepsilon)\;(a^{k+1}\cdot x-a^k\cdot x)< S(a^{k+1}\cdot x)-S(a^k\cdot x)<(\nu''+\varepsilon)\;(a^{k+1}\cdot x-a^k\cdot x).$$

Summation over k = 0, 1, 2, ..., n - 1, yields

$$(\nu'-\varepsilon)$$
 $(a^n\cdot x-x) < S(a^n\cdot x)-S(x) < (\nu''+\varepsilon)$ $(a^n\cdot x-x)$

or if $y = a^n \cdot x$:

$$v'-\varepsilon < \frac{S(y)-S(a^{-n}\cdot y)}{y-a^{-n}\cdot y} < v''+\varepsilon.$$

This holds in particular for any n > 0 and $N < a^{-n} \cdot y < a \cdot N^2$. It is now possible to change y continuously from N to infinity, while leaving these conditions fullfilled (by shifting the integer n). Hence it follows because $a^{-n} \cdot y$ and $S(a^{-n} \cdot y)$ are bounded, that for y sufficiently large, say $y > M(\varepsilon, v', v'')$ (8) holds.

Proof of theorem 1:

a. Suppose $S \in \mathfrak{S}^a$. From the definition in example 2, and the lemma, it follows immediately, that also $S \in \mathfrak{S}$, and $v^a(S) = v(S)$.

b. Suppose $S \in \mathfrak{S}$, S is a set as mentioned in example 1 under b) v(S) = v.

The function $N(\eta)$ defined for $\eta > 0$ exists, such that if $x_2 > x_1 > N(\eta)$, $\eta > 0$ being fixed, then

$$(\nu - \eta) x_i < S(x_i) < (\nu + \eta) x_i, \quad i = 1, 2.$$

or

$$\begin{split} (\nu - \eta) \; x_2 - (\nu + \eta) \; x_1 &< S(x_2) - S(x_1) < (\nu + \eta) \; x_2 - (\nu - \eta) \; x_1 \\ \nu - \frac{x_2 + x_1}{x_2 - x_1} \; \eta &< \frac{S(x_2) - S(x_1)}{x_2 - x_1} < \nu + \frac{x_2 + x_1}{x_2 - x_1} \; \eta. \end{split}$$

Let $x_2 = a \cdot x_1 = a \cdot x$, $a = 1 + \delta > 1$, and $\varepsilon > 0$. Choose

$$\eta < \frac{\delta}{2+\delta} \varepsilon$$
.

Then

$$v-\varepsilon < \frac{S(ax)-S(x)}{ax-x} < v+\varepsilon \qquad (x>N(\eta)=N(\eta(\varepsilon)).$$

This holds for any $\varepsilon > 0$ and $x > N(\eta(\varepsilon))$, hence:

$$v^a(S) \stackrel{\text{def}}{=} \lim_{x \to \infty} \frac{S(ax) - S(x)}{ax - x} = v$$

and $S \in \mathfrak{S}^a$. The theorem follows.

Example 3. Let the function y = f(x) be defined and be monotonously increasing for $x > x_0$, and $f(x) < f(x_0)$ or not defined for $x < x_0$. Let $\mathfrak{S}^* = f^{-1}(\mathfrak{S})$ consist of the subsets of R that are the sum of a bounded (above) set and the image under f^{-1} of a set of \mathfrak{S} (example 1) (it is clear that choice of a larger number then x_0 , instead of x_0 , has no influence on the result \mathfrak{S}^* . The function f(x) is only of interest for values x > the arbitrarily large value $x_0(!)$).

An additive set function v^* on \mathfrak{S}^* is defined by (3) and: $v^*(S^*) = 0$ if $S^* (\in \mathfrak{S}^*)$ is bounded; if $S^* = f^{-1}(S)$ then

$$\nu^*(S^*) = \nu^*(f^{-1}(S)) = \nu(S) = \nu(f(S^*)).$$

Notation: $\mathfrak{S}^* = f^{-1}(\mathfrak{S}), \ \nu^* = \nu \cdot f.$

The following theorem gives a condition under which the setfunction just defined is an invariant semi distribution, and it is even the same as ν in example 1.

Main Theorem 2:

If a > 0, x_0 is a constant, f(x) is bounded above or not defined for $x < x_0$, f(x) is differentiable for $x \ge x_0$, and

(9)
$$\lim_{x\to\infty}\frac{f'(x)}{a\cdot x^{a-1}}=K>0,$$

then $\mathfrak{S}^* = f^{-1}(\mathfrak{S}) = \mathfrak{S}$ and $\mathfrak{v}^* = \mathfrak{v} \cdot f = \mathfrak{v} \cdot ;$ or in words: then the semi distribution \mathfrak{v} is invariant under the "transformation" f.

Proof: Let K=1 (a restriction not essential for the proof). From (9) follows the existence of $N'(\varepsilon) > x_0$, defined for $\varepsilon > 0$, such that $x > N'(\varepsilon)$ implies:

(10)
$$a(1-\varepsilon) x^{\alpha-1} < f'(x) < \alpha(1+\varepsilon) x^{\alpha-1}.$$

We integrate from N' to z and replace z by x:

$$(1-\varepsilon) x^a + C_1 < f(x) - f(N') < (1+\varepsilon) x^a + C_2.$$

Therefore $N''(\varepsilon) > N'(\varepsilon)$ exists, such that $x > N''(\varepsilon)$ implies (10) and

$$(11) (1-2\varepsilon) x^{\alpha} < f(x) < (1+2\varepsilon) x^{\alpha}.$$

Now let $v^* = v^*(S^*)$ be the value of the setfunction $v^* = v \cdot f$ at the set $S^* = f^{-1}(S)$ $(S = f(S^*))$. Then because $v^* = \lim_{x \to \infty} S(f(x))/f(x)$, $N^0(\eta)$ defined for $\eta > 0$ exists, such that $x > N^0(\eta)$, a > 1, implies

$$(v^* - \eta) f(ax) < S(f(ax)) < (v^* + \eta) f(ax),$$

 $(v^* + \eta) f(x) > S(f(x)) > (v^* - \eta) f(x),$

$$(v^* - \eta) f(ax) - (v^* + \eta) f(x) < S(f(ax)) - S(f(x)) < (v^* + \eta) f(ax) - (v^* - \eta) f(x),$$

(12)
$$v^* - \frac{f(ax) + f(x)}{f(ax) - f(x)} \eta < \frac{S(f(ax)) - S(f(x))}{f(ax) - f(x)} < v^* + \frac{f(ax) + f(x)}{f(ax) - f(x)} \eta.$$

From now on we suppose $a \ge 1$. The proof of the other case 0 < a < 1 is obtained by obvious alterations.

The derivative of the function f in the interval x - ax $(x > N''(\varepsilon))$ and $x > N^0(\eta)$ is bounded by $a(1 - \varepsilon) x^{a-1}$ and $a(1 + \varepsilon) (ax)^{a-1}$ (compare (10)). Therefore f(ax) - f(x) is bounded by (!):

(13)
$$a(1-\varepsilon) x^{a-1} (ax-x)$$
 and $a(1+\varepsilon) (ax)^{a-1} (ax-x)$.

The Lebesgue measure S(f(ax)) - S(f(x)) is bounded by (!):

(14)
$$a(1-\varepsilon) x^{a-1} (S^*(ax) - S^*(x))$$
 and $a(1+\varepsilon) (ax)^{a-1} (S^*(ax) - S^*(x))$.

From (13) and (14) we get:

$$(15) \quad \frac{1-\varepsilon}{1+\varepsilon} \, a^{1-a} \, \frac{S^*(ax) - S^*(x)}{ax-x} < \frac{S(f(ax)) - S(f(x))}{f(ax) - f(x)} < \frac{1+\varepsilon}{1-\varepsilon} \, a^{a-1} \, \frac{S^*(ax) - S^*(x)}{ax-x}$$

From (11) and (13) we get

(16)
$$\frac{f(ax)+f(x)}{f(ax)-f(x)}\eta < \frac{(1+2\varepsilon)\left[(ax)^a+x^a\right]}{a(1-\varepsilon)x^{a-1}(ax-x)}\eta = \frac{1+2\varepsilon}{a(1-\varepsilon)}\frac{a^a+1}{a-1}\eta.$$

We now choose for any a > 1, $\varepsilon > 0$, $\eta = \eta$ (a, ε) so small that the right hand side of (16) is less then ε . This inequality is used in (12) and combining the result with (15) we obtain:

(17)
$$\frac{1-\varepsilon}{1+\varepsilon} a^{1-a} (\nu^* - \varepsilon) < \frac{S^*(ax) - S^*(x)}{ax - x} < \frac{1+\varepsilon}{1-\varepsilon} a^{a-1} (\nu^* + \varepsilon).$$

Applying the lemma we conclude to the existence of $M(a, \varepsilon')$, defined for all a > 1, $\varepsilon' > 0$, such that $x > M(a, \varepsilon')$, a, ε' being fixed, implies

$$v^* \, a^{1-a} - \varepsilon' < \frac{S^*(x)}{x} < a^{a-1} \, v^* + \varepsilon'$$

hence

$$\lim_{x\to\infty} \frac{S^*(x)}{x} = \nu^*.$$

By definition this limit is $\nu(S^*)$, and therefore $S^* \in \mathfrak{S}$. It follows that $\mathfrak{S}^* \subset \mathfrak{S}$. Because f(x) has an inverse for $x > x_0$, which obeys conditions (9) (with other constants), also $\mathfrak{S} \subset \mathfrak{S}^*$. Therefore $\mathfrak{S}^* = \mathfrak{S}$, and for any $S \in \mathfrak{S} : \nu^*(S) = \nu(S)$. q.e.d.

Application.

Let s be a Lebesgue measurable (L.m.) subset of the interval $0 \le x < 1$, with measure $\mu(s)$. Let S = S(s) be the set of all numbers x that differ an integer from a number in the set s. Obviously $\nu(S) = \mu(s)$.

Let f(x) be a function and let $S^*(s) = f^{-1}(S)$ be the set of all x for which f(x) is a number in the set S. If $v(S^*) = v(S^*(s), f) = v(s, f)$ exists for any L.m. set s, and v(s, f) is an infinitely additive setfunction, then f(x) is said to possess the C^{III} -distribution mod 1: v(s, f). If v(s, f) exists for any s that is a finite sum of intervals, and v(s, f) is finitely additive, then f(x) is said to possess the C^{I} -distribution mod 1: v(s, f). If the distribution mod 1: v(s, f) coincides with the Lebesgue measure $\mu(s)$, then the distribution is called uniform.

As a corrollary of theorem 2 we now have:

Theorem 3 (Kuipers-Meulenbeld). If f(x) obeys the conditions of theorem 2 (in particular (9)), then f(x) is C^{III} uniformly distributed mod 1. 1)

Proof: If s is L.m. then
$$\nu(s, f) = \nu(S^*) = \nu(S) = \mu(s)$$
.

II. Some functions which do not possess a C1-distribution mod 1.

In theorem 2 we proved the invariance of the finitely additive setfunction $\nu(S)$ under a transformation which is in a certain sense not much different from $x \to x^a$, $\alpha > 0$. It is easily seen that $\nu(S)$ is **not** invariant under $x \to e^x$ or the inverse $x \to \ln x$. For these functions the conclusion of theorem 3 is not a corrollary of theorem 2. e^x happens to be C^{III} -uniformly distributed mod 1; $\ln x$ not. We prove:

Theorem 4. If M, L > 0 are constants, f(x) is continuous, $\lim_{x\to\infty} f(x) = \infty$ 2), and if $\gamma > \beta > M$, $f(\gamma) - f(\beta) > 1/4$ implies

$$\beta \frac{f(\gamma) - f(\beta)}{\gamma - \beta} < L,$$

then f(x) does not possess a C^{I} -distribution mod 1.

¹⁾ For $a \ge 1$, this is, but for a condition of monotony which I do not need, a theorem of Kuipers ([2] Ch. III, th. 6). For 0 < a < 1, Kuipers and Meulenbeld recently gave a proof of an n-dimensional generalisation of th. 3 ([4] th. IV).

²⁾ This condition is superfluous, but it is convenient in the proof.

Proof: Suppose the finitely additive setfunction v(s) = v(s, f) is the C^{I} -distribution mod 1 of the given function f(x). We will show that the assumption of its existence leads to a contradiction.

Let s be the interval of numbers x which obey $0 \le p < x < q < 1$, q - p = b > 1/4. S = S(s) and $S^* = f^{-1}(S)$ are defined as before.

By definition $N(\varepsilon)$ exists, such that $x > N(\varepsilon)$ implies

(19)
$$\nu(s) - \varepsilon < \frac{S^*(x)}{x} < \nu(s) + \varepsilon.$$

Let also $N(\varepsilon) > M$.

Next we choose two numbers β and $\gamma > \beta > N(\varepsilon)$, such that: γ is the smallest number greater than β , for which $f(\gamma) \equiv q \mod 1$; β is the greatest number smaller than γ , for which $f(\beta) \equiv p \mod 1$; $f(\gamma) > f(\beta)$. Because f(x) is continuous:

$$S^*(\gamma) = S^*(\beta) + (\gamma - \beta).$$

In view of (19):

(20)
$$S^*(\gamma) > (\nu(s) - \varepsilon) \beta + (\gamma - \beta) = \gamma - (1 - \nu(s) + \varepsilon) \beta.$$

Application of (18) yields:

$$\frac{\beta b}{\gamma - \beta} < L \text{ or } \beta < \frac{L}{L + b} \gamma.$$

Substitute in (20), divide by γ , and rearrange:

(21)
$$\frac{S^*(\gamma)}{\gamma} > \nu(s) + \frac{(1-\nu(s))b}{L+b} - \varepsilon \frac{L}{L+b}.$$

If $\nu(s) \neq 1$, then ε can be chosen so small, and $\gamma > N(\varepsilon)$ exists, such that

$$\frac{S^*(\gamma)}{\gamma} > \nu(s) + \varepsilon$$

in contradiction with (19).

Hence for all intervals like s we get the same value $\nu(s) = 1$ so that $\gamma(s)$ cannot be an additive setfunction • q.e.d.

Examples:

- 1. If f(x) is differentiable and $x \cdot f'(x)$ (x > 0) is bounded, then f(x) does not possess a C^I -distribution mod 1. In particular f(x) is not uniformly distributed, which was also proved by Kuipers and Meulenbeld ([4] th. II). E.g. $\ln x$, $\ln (x + \sin x + 1)$, have no C^I -distribution mod 1.
- 2. A step function with discontinuities at the integervalues of x, can be approximated by a continuous function in such a way, that the measure of the set of all x for which the values of the two functions differ, is bounded. We are therefore able to prove: If the sequence n(f(n+1) f(n)) (n > 0) is bounded, then the function f(x), defined by f(x) = f(n)

if $n \le x < n+1$, does not possess a C^{I} -distribution mod 1; in other words: f(n) does not possess a C^{I} -distribution mod 1.

Compare [1] E.g. $f(n) = \ln n$.

Technische Hogeschool, Delft

July 1950.

REFERENCES

- [1] Koksma, J. F., Diophantische Approximationen, Kap. VIII, Springer (Berlin 1936).
- [2] Kuipers, L., Asymptotische verdeling mod 1 van de waarden van meetbare functies, Thesis V.U. (Amsterdam, 1947).
- [3] Kuipers, L. and B. Meulenbeld, Asymtotic C-distribution. Proc. Kon. Ned. Akad. v. Wetensch. Amsterdam 52, 1151-1163 (1949).
- [4] ———, New results in the theory of C-uniform distribution. Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam 53, 822-827 (1950).
- [5] POLYA, G. und G. Szego, Aufgaben und Lehrsätze aus der analysis Zweiter Abschnitt, Kapitel 4.