MATHEMATICS

DISTRIBUTION MODULO 1 OF SOME CONTINUOUS FUNCTIONS

BY
N. H. KUIPER

(Communicated by Prof. W. van der Woude at the meeting of Sept. 30, 1950)

This paper consists of two parts. In part I we study an invariant additive set function of sets of real numbers. As an application of the main theorem we obtain the distribution modulo 1 of functions of a certain class. In part II we prove the non-existence of a distribution modulo 1 of functions of another class.
I. The invariant finitely additive set function v.

The space R of the real numbers is group space of the group G of translations $(x \rightarrow x+b)$. A set \subseteq of subsets of R is called an invariant class of sets, if:

$$
\begin{gather*}
S_{1}, S_{2} \in \mathbb{S}, S_{1} \cap S_{2}=0 \text { implies } S_{1}+S_{2} \in \mathbb{S} ; \tag{1}\\
S \in \mathbb{S}, g \in G \text { implies } g \cdot S \in \mathbb{S} \tag{2}
\end{gather*}
$$

A set function defined on \mathfrak{S} is called an invariant finitely additivc setfunction (ν), if

$$
\begin{gather*}
S_{1} \cap S_{2}=0, S_{1}, S_{2} \in \mathbb{S}, \text { implies } v\left(S_{1}+S_{2}\right)=v\left(S_{1}\right)+v\left(S_{2}\right) ; \tag{3}\\
S \in \mathbb{S}, g \in G, \text { implies } v(g \cdot S)=v(S)
\end{gather*}
$$

We call ν an invariant semi-distribution on \mathfrak{S}, if moreover:

$$
\begin{gather*}
S \in \mathbb{S}, \text { implies } \nu(S) \geqq 0 \tag{5}\\
R \in \mathbb{S}, \text { and } \nu(R)=1 \tag{6}
\end{gather*}
$$

Example 1. Throughout the paper $S(x)(x>0)$ will denote the Lebesgue measure (if existing) of the intersection of a set of real numbers S and the segment $0-x$. Let \subseteq be the class of the following sets: a) the sets that are bounded by a greater number (bounded above); b) the sets for which $\lim _{x \rightarrow \infty} S(x) / x$ exists; c) any set which is a sum of a set of a) and a set of b).

Throughout the paper $\nu(S)$ will denote the invariant semi distribution on the class of sets \mathcal{S}, defined by: (3); $\nu(S)=0$ if S is bounded above; $v(S)=\lim _{x \rightarrow \infty} S(x) / x$ if this exists. We observe that (3) is not contradicted, (5) and (6) are obviously fullfilled, and so we only need to prove (4): If g is
a translation over a distance $d<0$, and S is a set mentioned under b), then

$$
\begin{aligned}
& v(g \cdot S)=\lim _{x \rightarrow \infty} \frac{(g \cdot S)(x)}{x}=\lim _{x \rightarrow \infty} \frac{S(x+d)-S(d)}{x}= \\
& \qquad \lim _{x \rightarrow \infty} \frac{S(x+d)}{x}=\lim _{x \rightarrow \infty} \frac{S(x)}{x}=v(S) \text { q.e.d. }
\end{aligned}
$$

Here, and in the sequel, we restrict to proofs concerning sets mentioned under b); the proofs for the other sets are simple consequences.

Example 2. Let $a>1$, and let \mathbb{S}^{a} be the class of sets for which

$$
\left(\nu^{a} \stackrel{\text { def }}{=}\right) \lim _{x \rightarrow \infty} \frac{S(a x)-S(x)}{a x-x} \text { exists. }
$$

$S(a x)-S(x)$ denotes the Lebesgue measure of the intersection of S and the interval $(x-a x)$.

The best way to show that also ν^{a} is a semi distribution on \mathbb{S}^{a}, is to prove the

Theorem 1. $\mathbb{S}^{a}=\mathbb{S}, \nu^{a}=\nu$, for any $a>1$.
First we prove a lemma which we will also need later on.
Lemma. Let S be a subset of R, and $a>1$. If for any $\varepsilon>0, N(\varepsilon)$ exists such that $x>N$ implies

$$
\begin{equation*}
v^{\prime}-\varepsilon<\frac{S(a x)-S(x)}{a x-x}<\nu^{\prime \prime}+\varepsilon, \tag{7}
\end{equation*}
$$

then $M\left(\varepsilon, \nu^{\prime}, \nu^{\prime \prime}\right)$ exists, such that $y>M$ implies

$$
\begin{equation*}
\nu^{\prime}-2 \varepsilon<\frac{S(y)}{y}<\nu^{\prime \prime}+2 \varepsilon . \tag{8}
\end{equation*}
$$

Proof: For $x>N$, we conclude from (7)

$$
\nu^{\prime}-\varepsilon<\frac{S\left(a^{k+1} \cdot x\right)-S\left(a^{k} \cdot x\right)}{a^{k+1} \cdot x-a^{k} \cdot x}<\nu^{\prime \prime}+\varepsilon, \quad k=0,1,2, \ldots
$$

or

$$
\left(\nu^{\prime}-\varepsilon\right)\left(a^{k+1} \cdot x-a^{k} \cdot x\right)<S\left(a^{k+1} \cdot x\right)-S\left(a^{k} \cdot x\right)<\left(\nu^{\prime \prime}+\varepsilon\right)\left(a^{k+1} \cdot x-\mathrm{a}^{k} \cdot x\right) .
$$

Summation over $k=0,1,2, \ldots, n-1$, yields

$$
\left(\nu^{\prime}-\varepsilon\right)\left(a^{n} \cdot x-x\right)<S\left(a^{n} \cdot x\right)-S(x)<\left(\nu^{\prime \prime}+\varepsilon\right)\left(a^{n} \cdot x-x\right)
$$

or if $y=a^{n} \cdot x$:

$$
\nu^{\prime}-\varepsilon<\frac{S(y)-S\left(a^{-n} . y\right)}{y-a^{-n} \cdot y}<\nu^{\prime \prime}+\varepsilon .
$$

This holds in particular for any $n>0$ and $N<a^{-n} \cdot y<a \cdot N^{2}$. It is now possible to change y continuously from N to infinity, while leaving these conditions fullfilled (by shifting the integer n). Hence it follows because $a^{-n} \cdot y$ and $S\left(a^{-n} \cdot y\right)$ are bounded, that for y sufficiently large, say $y>M\left(\varepsilon, \nu^{\prime}, \nu^{\prime \prime}\right)(8)$ holds.

Proof of theorem 1:
a. Suppose $S \in \mathbb{S}^{a}$. From the definition in example 2, and the lemma, it follows immediately, that also $S \in \mathbb{S}$, and $\nu^{a}(S)=\nu(S)$.
b. Suppose $S \in \mathbb{S}, S$ is a set as mentioned in example 1 under b) $\nu(S)=\nu$.

The function $N(\eta)$ defined for $\eta>0$ exists, such that if $x_{2}>x_{1}>N(\eta)$, $\eta>0$ being fixed, then

$$
(\nu-\eta) x_{i}<S\left(x_{i}\right)<(\nu+\eta) x_{i}, \quad i=1,2 .
$$

or

$$
\begin{gathered}
(\nu-\eta) x_{2}-(\nu+\eta) x_{1}<S\left(x_{2}\right)-S\left(x_{1}\right)<(\nu+\eta) x_{2}-(\nu-\eta) x_{1} \\
\nu-\frac{x_{2}+x_{1}}{x_{2}-x_{1}} \eta<\frac{S\left(x_{2}\right)-S\left(x_{1}\right)}{x_{2}-x_{1}}<\nu+\frac{x_{2}+x_{1}}{x_{2}-x_{1}} \eta .
\end{gathered}
$$

Let $x_{2}=a \cdot x_{1}=a \cdot x, a=1+\delta>1$, and $\varepsilon>0$. Choose

$$
\eta<\frac{\delta}{2+\delta} \varepsilon
$$

Then

$$
\nu-\varepsilon<\frac{S(a x)-S(x)}{a x-x}<\nu+\varepsilon \quad(x>N(\eta)=N(\eta(\varepsilon)) .
$$

This holds for any $\varepsilon>0$ and $x>N(\eta(\varepsilon))$, hence:

$$
\nu^{a}(S) \stackrel{\text { def }}{=} \lim _{x \rightarrow \infty} \frac{S(a x)-S(x)}{a x-x}=v
$$

and $S \in \mathbb{S}^{a}$. The theorem follows.
Example 3. Let the function $y=f(x)$ be defined and be monotonously increasing for $x>x_{0}$, and $f(x)<f\left(x_{0}\right)$ or not defined for $x<x_{0}$. Let ऽ* $=f^{-1}(\mathbb{S})$ consist of the subsets of R that are the sum of a bounded (above) set and the image under f^{-1} of a set of \subseteq (example l) (it is clear that choice of a larger number then x_{0}, instead of x_{0}, has no influence on the result \mathbb{S}^{*}. The function $f(x)$ is only of interest for values $x>$ the arbitrarily large value $\left.x_{0}(!)\right)$.

An additive set function ν^{*} on \mathbb{S}^{*} is defined by (3) and: $\nu^{*}\left(S^{*}\right)=0$ if $S^{*}\left(\in \mathbb{S}^{*}\right)$ is bounded; if $S^{*}=f^{-1}(S)$ then

$$
\nu^{*}\left(S^{*}\right)=\nu^{*}\left(f^{-1}(S)\right)=\nu(S)=\nu\left(f\left(S^{*}\right)\right)
$$

Notation: $\mathbb{S}^{*}=f^{-1}(\mathbb{S}), v^{*}=\nu \cdot f$.
The following theorem gives a condition under which the setfunction just defined is an invariant semi distribution, and it is even the same as v in example 1 .

Main Theorem 2:

If $\alpha>0, x_{0}$ is a constant, $f(x)$ is bounded above or not defined for $x<x_{0}$, $f(x)$ is differentiable for $x \geqq x_{0}$, and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{a \cdot x^{\alpha-1}}=K>0 \tag{9}
\end{equation*}
$$

then $\mathfrak{S}^{*}=f^{-1}(\mathfrak{S})=\mathfrak{S}$ and $\nu^{*}=v \cdot f=\nu \cdot ;$ or in words : then the semi distribution v is invariant under the "transformation" f.

Proof: Let $K=1$ (a restriction not essential for the proof). From (9) follows the existence of $N^{\prime}(\varepsilon)>x_{0}$, defined for $\varepsilon>0$, such that $x>N^{\prime}(\varepsilon)$ implies:

$$
\begin{equation*}
a(1-\varepsilon) x^{a-1}<f^{\prime}(x)<a(1+\varepsilon) x^{a-1} . \tag{10}
\end{equation*}
$$

We integrate from N^{\prime} to z and replace z by x :

$$
(1-\varepsilon) x^{a}+C_{1}<f(x)-f\left(N^{\prime}\right)<(1+\varepsilon) x^{a}+C_{2}
$$

Therefore $N^{\prime \prime}(\varepsilon)>N^{\prime}(\varepsilon)$ exists, such that $x>N^{\prime \prime}(\varepsilon)$ implies (10) and

$$
\begin{equation*}
(1-2 \varepsilon) x^{a}<f(x)<(1+2 \varepsilon) x^{a} . \tag{11}
\end{equation*}
$$

Now let $\nu^{*}=\nu^{*}\left(S^{*}\right)$ be the value of the setfunction $\nu^{*}=\nu \cdot f$ at the set $S^{*}=f^{-1}(S)\left(S=f\left(S^{*}\right)\right)$. Then because $\nu^{*}=\lim _{x \rightarrow \infty} S(f(x)) / f(x), N^{0}(\eta)$ defined for $\eta>0$ exists, such that $x>N^{0}(\eta)$, a>1, implies

$$
\begin{aligned}
& \left(v^{*}-\eta\right) f(a x)<S(f(a x))<\left(\nu^{*}+\eta\right) f(a x) \\
& \left(v^{*}+\eta\right) f(x)>S(f(x))>\left(\nu^{*}-\eta\right) f(x)
\end{aligned}
$$

$$
\left(v^{*}-\eta\right) f(a x)-\left(v^{*}+\eta\right) f(x)<S(f(a x))-S(f(x))<\left(v^{*}+\eta\right) f(a x)-\left(v^{*}-\eta\right) f(x),
$$

$$
\begin{equation*}
\nu^{*}-\frac{f(a x)+f(x)}{f(a x)-f(x)} \eta<\frac{S(f(a x))-S(f(x))}{f(a x)-f(x)}<\nu^{*}+\frac{f(a x)+f(x)}{f(a x)-f(x)} \eta . \tag{12}
\end{equation*}
$$

From now on we suppose $\alpha \geqq 1$. The proof of the other case $0<\alpha<1$ is obtained by obvious alterations.

The derivative of the function f in the interval $x-a x\left(x>N^{\prime \prime}(\varepsilon)\right.$ and $x>N^{0}(\eta)$) is bounded by $\alpha(1-\varepsilon) x^{\alpha-1}$ and $\alpha(1+\varepsilon)(a x)^{a-1}$ (compare (10)). Therefore $f(a x)-f(x)$ is bounded by (!):

$$
\begin{equation*}
a(1-\varepsilon) x^{a-1}(a x-x) \text { and } \alpha(1+\varepsilon)(a x)^{a-1}(a x-x) . \tag{13}
\end{equation*}
$$

The Lebesgue measure $S(f(a x))-S(f(x))$ is bounded by (!):
(14) $\alpha(1-\varepsilon) x^{\alpha-1}\left(S^{*}(a x)-S^{*}(x)\right)$ and $\alpha(1+\varepsilon)(a x)^{a-1}\left(S^{*}(a x)-S^{*}(x)\right)$.

From (13) and (14) we get:

$$
\begin{equation*}
\frac{1-\varepsilon}{1+\varepsilon} a^{1-a} \frac{S^{*}(a x)-S^{*}(x)}{a x-x}<\frac{S(f(a x))-S(f(x))}{f(a x)-f(x)}<\frac{1+\varepsilon}{1-\varepsilon} a^{a-1} \frac{S^{*}(a x)-S^{*}(x)}{a x-x} \tag{15}
\end{equation*}
$$

From (11) and (13) we get:

$$
\begin{equation*}
\frac{f(a x)+f(x)}{f(a x)-f(x)} \eta<\frac{(1+2 \varepsilon)\left[(a x)^{a}+x^{a}\right]}{a(1-\varepsilon) x^{a-1}(a x-x)} \eta=\frac{1+2 \varepsilon}{a(1-\varepsilon)} \frac{a^{a}+1}{a-1} \eta . \tag{16}
\end{equation*}
$$

We now choose for any $a>1, \varepsilon>0, \eta=\eta(a, \varepsilon)$ so small that the right hand side of (16) is less then ε. This inequality is used in (12) and combining the result with (15) we obtain:

$$
\begin{equation*}
\frac{1-\varepsilon}{1+\varepsilon} a^{1-a}\left(\nu^{*}-\varepsilon\right)<\frac{S^{*}(a x)-S^{*}(x)}{a x-x}<\frac{1+\varepsilon}{1-\varepsilon} a^{a-1}\left(\nu^{*}+\varepsilon\right) . \tag{17}
\end{equation*}
$$

Applying the lemma we conclude to the existence of $M\left(a, \varepsilon^{\prime}\right)$, defined for all $a>1, \varepsilon^{\prime}>0$, such that $x>M\left(a, \varepsilon^{\prime}\right)$, a, ε^{\prime} being fixed, implies

$$
\nu^{*} a^{1-a}-\varepsilon^{\prime}<\frac{S^{*}(x)}{x}<a^{\alpha-1} \nu^{*}+\varepsilon^{\prime}
$$

hence

$$
\lim _{x \rightarrow \infty} \frac{S^{*}(x)}{x}=\nu^{*}
$$

By definition this limit is $v\left(S^{*}\right)$, and therefore $S^{*} \in \mathbb{S}$. It follows that $\mathfrak{S}^{*} \subset \mathfrak{S}$. Because $f(x)$ has an inverse for $x>x_{0}$, which obeys conditions (9) (with other constants), also $\subseteq \subset \subseteq \mathfrak{S}^{*}$. Therefore $\mathfrak{S}^{*}=\mathfrak{S}$, and for any $S \in \mathbb{S}: \nu^{*}(S)=\nu(S)$. q.e.d.

Application.
Let s be a Lebesgue measurable (L.m.) subset of the interval $0 \leqq x<1$, with measure $\mu(s)$. Let $S=S(s)$ be the set of all numbers x that differ an integer from a number in the set s. Obviously $v(S)=\mu(s)$.

Let $f(x)$ be a function and let $S^{*}(s)=f^{-1}(S)$ be the set of all x for which $f(x)$ is a number in the set S. If $v\left(S^{*}\right)=v\left(S^{*}(s), f\right)=v(s, f)$ exists for any L.m. set s, and $\nu(s, f)$ is an infinitely additive setfunction, then $f(x)$ is said to possess the $C^{\text {III }}$-distribution mod $1: v(s, f)$. If $v(s, f)$ exists for any s that is a finite sum of intervals, and $v(s, f)$ is finitely additive, then $f(x)$ is said to possess the C^{I}-distribution $\bmod 1: \nu(s, f)$. If the distribution $\bmod 1$ $\nu(s, f)$ coincides with the Lebesgue measure $\mu(s)$, then the distribution is called uniform.

As a corrollary of theorem 2 we now have:
Theorem 3 (Kuipers-Meulenbeld). If $f(x)$ obeys the conditions of theorem 2 (in particular (9)), then $f(x)$ is $C^{\text {III }}$ uniformly distributed mod 1. ${ }^{1}$)

Proof: If s is L.m. then $\nu(s, f)=\nu\left(S^{*}\right)=\nu(S)=\mu(s)$.
II. Some functions which do not possess a C^{1}-distribution mod 1 .

In theorem 2 we proved the invariance of the finitely additive setfunction $v(S)$ under a transformation which is in a certain sense not much different from $x \rightarrow x^{a}, \alpha>0$. It is easily seen that $v(S)$ is not invariant under $x \rightarrow e^{x}$ or the inverse $x \rightarrow \ln x$. For these functions the conclusion of theorem 3 is not a corrollary of theorem 2 . e^{x} happens to be $C^{\text {III }}$-uniformly distributed $\bmod 1 ; \ln x$ not. We prove:

Theorem 4. If $M, L>0$ are constants, $f(x)$ is continuous, $\lim _{x \rightarrow \infty} f(x)=$ $=\infty^{2}$), and if $\gamma>\beta>M, f(\gamma)-f(\beta)>1 / 4$ implies

$$
\begin{equation*}
\beta \frac{f(\gamma)-f(\beta)}{\gamma-\beta}<L, \tag{18}
\end{equation*}
$$

then $f(x)$ does not possess a C^{I}-distribution mod 1.

[^0]Proof: Suppose the finitely additive setfunction $\nu(s)=\nu(s, f)$ is the C^{I}-distribution mod 1 of the given function $f(x)$. We will show that the assumption of its existence leads to a contradiction.

Let s be the interval of numbers x which obey $0 \leqq p<x<q<1$, $q-p=b>1 / 4 . S=S(s)$ and $S^{*}=f^{-1}(S)$ are defined as before.

By definition $N(\varepsilon)$ exists, such that $x>N(\varepsilon)$ implies

$$
\begin{equation*}
\nu(s)-\varepsilon<\frac{S^{*}(x)}{x}<\nu(s)+\varepsilon . \tag{19}
\end{equation*}
$$

Let also $N(\varepsilon)>M$.
Next we choose two numbers β and $\gamma>\beta>N(\varepsilon)$, such that: γ is the smallest number greater than β, for which $f(\gamma) \equiv q \bmod 1 ; \beta$ is the greatest number smaller than γ, for which $f(\beta) \equiv p \bmod 1 ; f(\gamma)>f(\beta)$. Because $f(x)$ is continuous:

$$
S^{*}(\gamma)=S^{*}(\beta)+(\gamma-\beta)
$$

In view of (19):

$$
\begin{equation*}
S^{*}(\gamma)>(\nu(s)-\varepsilon) \beta+(\gamma-\beta)=\gamma-(1-\nu(s)+\varepsilon) \beta \tag{20}
\end{equation*}
$$

Application of (18) yields:

$$
\frac{\beta b}{\gamma-\beta}<L \text { or } \beta<\frac{L}{L+b} \gamma .
$$

Substitute in (20), divide by γ, and rearrange:

$$
\begin{equation*}
\frac{S^{*}(\gamma)}{\gamma}>\nu(s)+\frac{(1-\nu(s)) b}{L+b}-\varepsilon \frac{L}{L+b} . \tag{21}
\end{equation*}
$$

If $\nu(s) \neq 1$, then ε can be choosen so small, and $\gamma>N(\varepsilon)$ exists, such that

$$
\frac{S^{*}(\gamma)}{\gamma}>\nu(s)+\varepsilon
$$

in contradiction with (19).
Hence for all intervals like s we get the same value $\nu(s)=1$ so that $\gamma(s)$ cannot be an additive setfunction - q.e.d.

Examples:

1. If $f(x)$ is differentiable and $x \cdot f^{\prime}(x)(x>0)$ is bounded, then $f(x)$ does not possess a C^{I}-distribution $\bmod 1$. In particular $f(x)$ is not uniformly distributed, which was also proved by Kuipers and Meulenbeld ([4] th. II). E.g. $\ln x, \ln (x+\sin x+1)$, have no C^{I}-distribution mod 1.
2. A step function with discontinuities at the integervalues of x, can be approximated by a continuous function in such a way, that the measure of the set of all x for which the values of the two functions differ, is bounded. We are therefore able to prove: If the sequence $n(f(n+1)-$ $-f(n))(n>0)$ is bounded, then the function $f(x)$, defined by $f(x)=f(n)$
if $n \leqq x<n+1$, does not possess a C^{I}-distribution mod 1 ; in other words: $f(n)$ does not possess a C^{I}-distribution $\bmod 1$.

Compare [1] E.g. $f(n)=\ln n$.
Technische Hogeschool, Delft
July 1950.

REFERENCES

[1] Korsma, J. F., Diophantische Approximationen, Kap. VIII, Springer (Berlin 1936).
[2] Kuipers, L., Asymptotische verdeling mod 1 van de waarden van meetbare functies, Thesis V.U. (Amsterdam, 1947).
[3] Kuipers, L. and B. Meulenbeld, Asymtotic C-distribution. Proc. Kon. Ned. Akad. v. Wetensch. Amsterdam 52, 1151 - 1163 (1949).
[4] -, New results in the theory of C-uniform distribution. Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam 53, $822-827$ (1950).
[5] Polya, G. und G. Szego, Aufgaben und Lehrsätze aus der analysis Zweiter Abschnitt, Kapitel 4.

[^0]: ${ }^{1}$) For $a \geqq 1$, this is, but for a condition of monotony which I do not need, a theorem of Kuipers ([2] Ch. III, th. 6). For $0<\alpha<1$, Kuipers and Meulenbeld recently gave a proof of an n-dimensional generalisation of th. 3 ([4] th. IV).
 ${ }^{2}$) This condition is superfluous, but it is convenient in the proof.

