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1. Introduction and summary 

To what extent is a continuous mapping topological on a weIl chosen 
subset? 

Given a continuous mapping I(M) = M' of a space M on a space M', 
one may ask for the existence of a subset M* C M such that 

I(M*) = M' 

and I even topological (on M*). If this is possible, we call M* a homeo­
morphic realisation of M' in M under I. 

Furthermore, I defined on M* is called a (topological) realisation of I 
(defined on M). Since we may remark, that in this case 

(1) 1-1 I(M) = M* 

(/-1 now denoting the topological inverse mapping of M'), M* is a retract 
of M, the retraction given by 1-1 I. 

Conversely, any retraction 

I(M)=ACM 

is determining a trivial realisation A of A. 
It will be shown in 4. by some examples, that very strong conditions 

are required, imposed on Mand I, if a reaIisation will be possible. 
But even then I cannot obtain general conclusions. 
The mapping A x B -+ B (defined by A x b -+ b, bE B) of a topo­

logical product on one of its factors, gives a simple example of a mapping 
by which a realisation is possible. 

One might consider realisations M* in connection with M as a certain 
generalisation of the topological product concept. This is one reason why 
realisations seem to me of some interest. 

Realisations generally being impossible, one may ask how far realisa­
tions are possible with respect to certain subsets of M'. In this way we 
arrive at the following definition. 

Be given a continuo us mapping I(M) = M'. If it is possible to find a 
subset * M of M such that I is topological on * Mand the image * M' of 
* M under I is dense in M', we define * M as a weak (topological) realisation 
of M' in M under I. 
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Shortly, * M is a weak realisation, if 

I (·M) = M', 1 topologica,l (on • M) . 

Weak realisations are not always possible. If M denotes the set of a 
countable number of isolated points and this set is mapped one to one on 
the set M' of rational numbers, obviously this mapping is continuous but 
there does not exist any weak realisation. The situation is completely 
changed however, if we are considering continuo us mappings of compact 
sets. 

We shall prove (see theorem IU and UI'), that to any continuous 
mapping ol an arbitrary compact metric space corresponds a weak realisation. 

We obtain this result by using an important theorem of HILL [8] and 
KURATOWSKI [7], which essentially says that, given an upper semi­
continuo us decomposition of a compact metric space, this decomposition 
is continuous on a well chosen subset, while the corresponding set in the 
decompositionspace (hyperspace) is dense in this space 1). 

This contention may be interpreted as a weak (interior) realisation in 
respect to interior mappings instead of the formerly mentioned topo­
logical mappings (theorem U). 

This "weak interim'-realisation theorem" is established by STOlLOW [10]. 
This theorem is moreover an almost immediate consequence of the theorem 
of HILL and KURATOWSKI. 

Our weak topological realisation is somewhat strengthened in theorem 
IU' by extension of the topological mapping, giving us the following 
mainresult: any continuous] mapping I ol a compactum M is topological 
on a Gd-subset 8 ol M, such that the Gd-set 1(8) is dense in I(M). 

This result intersects with theorems of KURATOWSKI, HUREWICZ and 
STOILOW, our result being far stronger but only proved in compact spaces. 
KURATOWSKI [6], p. 227 proved that any continuous mapping of a com­
plete separable space is töpological on a certain set D oeing a discontinuum 
of CANTOR, provided that the image is an uncountable set. 

Now considering a compactum instead of a complete space this fact is 
a simple consequence of theorem IU'. Indeed, the uncountable set I(M) 
contains a compact subset K dense in itself; according to theorem UI' 
there exists a Gd-subset 8 of the compact set 1- 1(K) such that I is topo­
logical on 8 and 1(8) is a Gd-subset of J( dense in K. 1(8) is therefore a 
Gd-set (therefore topologically complete), dense in itself and contains a 
discontinuum of CANTOR D' according to a theorem of YOUNG (compare 
e.g. HAHN [ll], p. 127). 

The topological inverse of D' gives the required D. HUREWICZ [12] 
gives generalisations of this theorem of KURATOWSKI; for instance: a 

1) KURATOWSKI'S theorem is expressed as follows: "La familie des tranches 
de continuité est un ensemble Gd dense dans l'hyperespace". For a partial result 
see also MOORE [9], p. 348, theorem 24. . 

98 
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continuous mapping of a separable space with an uncountable image is . 
topological on a certain perfect set. 

Finally: STOILOW [10] proves a theorem of very restricted character 
assuming that Mand M' are n-dimensional manifolds and that the 
inverse set I-l(m') of any point mi E M' is countable. 

All mentioned spaces are separable metric, all mappings continuous. 
Commonly we are using the terminology of WHYBURN [1]. The realisation 
problem originates from a suggestion of J. CH. BOLAND. 

2. Theorem J. (RILL, KURATOWSKI). If I(M) = M' is a continuous 
mapping of the compact metric spaceM, the corresponding upper semi­
continuous decomposition {t-I(X)} (x E M') of M contains a sub-collection 
being a continuous decomposition, while the corresponding image under 
lof this sub-collection in M' (M' is homeomorphic with the decomposition­
space (hyperspace) of M) is dense in M'. 

2. 1. We can express theorem I by means of interior mappings. To 
this end we call M* CM a weak interior realisation of M' in M under I, 
I(M) = M' if 

I (M.)= M', f interior on M •. 

As a simple result of theorem I we obtain 

Theorem Il. (STOILOW). At any continuous mapping ol a compact 
metric space a weak interior realisation may be lound 2). 

Proof. Applying theorem I to the upper semicontinuous decom­
position performed by the mapping I(M) = M', we obtain a subcollection 
M* = EE, being continuous (in the limit sense), such that 

I (M.) = M' 

M* = E E is a total inverse set under I. Rence we have only to prove 
that I is interior on M * (if M * would be compact, this fact is expressed 
by a well known theorem, but M* is not compact in general). 

If a neighbourhood U(p I M*) of a point 

pEECM* 

is not transformed on a neighbourhood of pi = I(p) in I(M*), there may be 
found a sequence of points p; E I(M*) converging to pi such that the 
intersection of I-I(p~) and U(pIM*) is vacuous. A subsequence of points {PI} 

PI EI-I (P;/) CM. 

is converging to a point q E M; q is a point of E, since I is continuous, and 
I(q) = lim I(P/) = I(p) = pi gives us 

q E I-l(p') = E 

2) Nate. We shall prove even more. In lact M. is a toeal inverse set under I,' 
M. = 1-1 I (M.) 

Taking this into consideration we see that theorem II is not an immedie.te con­
sequence of theorem 111. 
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Therefore 
lim inf 1-1 (p;,) • E *- O. 

This leads to (compare note 1» 

lim 1-1 (pIl) = E. 

Applying this result we can find in our neighbourhood U(pIM*) a point. 
p~ contrary to the fact that the intersection of I - l(p~) and U(pIM*) is 
vacuous. The transformed set of U(pIM*) is therefore It neighbourhood 
of I(p) in I(M*); thus is I interior on M*. 

3. Theorem 111. At any continuous mapping ol a compact metric 
space a weak (topological) realisation may be lound. 

It is worth noting, that the points of the realisation set * MeM must 
be carefully chosen. 

We are giving a simple example for illustration. Let M be the plane set 

-1~x~O 

x = O 

O~x~1 

y = 1 

l~y~2 

Y = 2 

Let I be the projection of M on the X-axis, such th at M' is the set 

-1~x~1 , y=O 

It is clear that there does not exist any (topological) realisation. A weak 
realisation * M however is given e.g. by the set 

-1~x<O , y=1 

O<x~1 , y = 2 

On the other hand it is apparently impossible to find a weak realisation 
* M which contains a point of the total inverse set 

x=O 
of 

x = 0, y = o. 

Proof of theorem lIl. We put as before, 

I(M) = M' 

Mand M' compact metric with metrics e and e'. 

M* = E E* 

is a continuous subcollection of the corresponding upper semi­
continuous decomposition M = E E, while M~ = I(M*) is dense in I(M). 
All this is possible according to theorem 1. We start changing the given 
metric e' in M~. 

To obtain this metric we are using a weIl known distance function a 
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of the compact subsets of M. Given two compact subsets 01 and O2 of M, 
we define 

a(Ol' O2) = inf {3 

if (3 is a real number such that 

U{J(Ol) :) O2 and U{J(02):) 01' 

It is known (comp. [5], p. 1I5) that in a compact space "metric" con­
vergence of compact subsets imposed by this distance function is identical 
with the "topological" convergence. 

Now we contend, that 

ê(x' , y') = e'(x', y') + a(/-I(x'), I-l(y')), x', y' EM~ 

is a metric in M~ equivalent to the given metric e' (it is worth noting 
that generally this is not true if we define ê on M'!). We see at once that ê 
is a distance function since e' and a are distance functions. Further, if 

( 1) 

we have 

lim e' (xI, x') = 0 
i 

xI, x' E M~ 

lim 1-1 (xl) = 1-1 (x'), 
i 

since the decomposition of M. is continuous. This convergence being 
identical with metric convergence, we obtain 

lim a (/-1 (xI), 1-1 (x')) = 0 
i 

and therefore 
lim è (x; , x') = O. 

i 

Conversely this relation obviously implies the relation (1). 
M~ (the imposed metric is from now on ê) has linite e-coverings with 

mesh ~ e for any e > O. This will be proved, if any sequence {pa of 
points p~ E M~ has a fundamental subsequence, according to a known 
theorem (comp. [5], p. 104). 

To prove this contention we select from {pa a subsequence converging 
at q' E M', say {q~}. Thus for any e> 0 we may find a natural number 
NI such that 

(2) 

The collection 

is a collection of E.- sets and has a convergent subsequence {zE.}, its 
limit being contained in I-l(q'). 

Obviously 

(3) 
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Now from (2) and (3) we immediately obtain 

è (qi., q~) < e if ll' l2 > N 3 • 

Rence {q' J is a fundamental subsequence of {pa. 
Let A~ be a countable subset of M~ dense in M~ and therefore dense 

in M'. 
There exists a real number Y1 < 1 such that the neighbourhood 

U'/.y.(p'IA~) of any point p' E A~ is open and closed in A~ . This results 
from the countability of A~ and the non-countability of the set of real 
numbers between 0 and 1. 

Therefore we may determine a finite open and closed Y1-covering (with 
mesh ~ Y1) {Uà (i = 1, 2, ... , k) of A~. 

This is possible since A~ C M~. Putting 

we obtain a finite Y1-covering Ol = {Vi} of A~ of disjoint sets both open 
and closed in A~ with mesh ~ Y1' 

Similarly it is apparently possible to determine a refinement of this 
covering being a finite Y2-covering O2 = {Vii} consisting of disjoint sets 
both open and closed in A~ such that 

Continuing this process we obtain a sequence of subsequently refined 
coverings {ai}, each ai being a finite Yi-coveriIig 

Yi < 1/2 Yi-1 

consisting of disjoint sets both open and closed in A~. Now we construct 
a sequence of points {aa, a~ E A~ as follows; in each Vk of Ol we select 
one point a~ (k = 1, 2, ... , k1); in each V ri of O2 we select one point 
a~.+i (l = 1,2, ... , ~), except for a V ri which already contains a pointa~. 
In each V ris' not containing a point a~ or aki + I we select a point 

(m = 1, 2, ... ,mI) 

and so on ad infinitum. 
The countable set 

A' = 1: a; c A~ c M~ c M' 

is obviously dense in M'. 
Now we start transforming A' one to one on a set AC M, such that 

I(A) = A'. 

Beginning with the points a~(k = 1,2, ... , k1) we select in each E.-set 
1-1(a~) = E~ an arbitrary chosen point al.. Proceeding with the points 
a~. + I (l = 1, 2, ... , ll)' 0 btained at the covering O2, we select in each 

1-1 (a~.+I) = E:·+I 
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a point ak, + 1 such that 

(4) 

k being determined by the conditions 

a~'+/EVk' l(ak)=a~EVkEOI. 

In other words: a~. + 1 is contained in one and only one V k; select the 
corresponding a~ in Vk and determine ak.+1 E E!·+I according to (4). 

Continuing this process we select in each 

1-1 (a~.+l,+m) = E!·+l,+m 

a point aki + I. +m such that 

(5) 

:n; fixed, being exactly one of the numbers 1,2, ... , kl + I1> determined by 
the conditions 

a~.+l,+mEV.i' a;. EV.i E02• 

Indefinitely continuing this process defined by means of induction, we 
arrive at our one to one mapping of A' on A. We assert, that the mapping 

I(A) = A' 

is topological (on A), and that A gives us the required weak realisation. 
I is continuous and apparently one to one on A; hence we have only to 
show the continuity of the mapping 1-1, if this time by 1-1 is indicated 
the mapping of A I on A. Let . 

u. = U. (ai IA) 

be an e-neighbourhood in A of a fixed point ai E A. We shall determine a 
neigh bourhood 

V' = V'(a~IA') 

which is mapped under the restricted I-Ion a subset of U. 
a; originates from the selection of a point in an open set being an 

element of a certain co vering 0,. 
Let 

be an open set of the finite covering 0,+ 1 such that 

a~ E V', Ya+1 < 1/2 e. 

Suppose a~ is some point of V'· A I. a~ originates from the selection of a 
point in an open set 

V" = Va ....... aa+/ ... a.+I+1 E 0,+1+1· 

One may find one and only one finite sequence of V-sets between V' and 
V" such that 

a~ E V' = V J V J ... J Va ~ a = V" 3 a~. • a.a, .. . a.+ 1 ala, ... a.+ 1+1 .~ .... + 1+ t 
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This sequence corresponds to a fixed finite sequence of a' -points 
contained in the corresponding V -sets 

such that a~i E A' and 

Apparently 

ê (a;, a;,) < 1/2E, ê(a;" a;,) <1/4E ,· .. ,ê (a;,._I' a;,.) <~. 

From this it is clear that 

(Ei Ei.) < 1/ (Ei. Ei.) < 1/ (Ein-l Ei,.) < E a *' * 2 E, a * '* 4 E, ••• , a * '* 2fi' 

From the obvious inequality 

min e(E*, p) ~ a(E*. IE ... ) if p E lE* 

and (4), (5), ... , we obtain 

such that 

e (ai> ak) .;;;; e (ai' ai.) + e (ai" ai,) + ... + e (ain _ 1 ' a/,;) < 
n e 00 e 

< L 2P < L 2P = E. 
p ~ 1 p~I 

e(ai> ak ) < E means however that ak E U.(a'iIA). V' is therefore mapped 
under (our new restricted) 1-1 in U., which we had to prove. 

3. 1. In our pro of we established a weak countable realisation-set A. 
How far is it possible to extend the topological mapping I(A) = A' under I 
to a topological mapping 

I(S) = S', A CSCM, A' CS' CM' ? 

In general S' ::1= M', for S' = M' would produce a realisation S of M' 
in M under I. This problem however is immediately solved by means of 
known theorems. 

Indeed, according to a well-known theorem of LAVRENTIEFF (comp. 
[6], p. 214) any homeomorphism !(A) = A' may be extended to a home­
omorphism g(S) = S' 

A cScM=A, A'cS'cM'=A' 

where S and S' are Gó-sets in Mand M'. 

Any continuo us extension however of I(A) = A' on a subset of M must 
coincide with I defined on M. 

Therefore g =c Ion S. At last we observe, that the Gó-sets S andS' are 
topologically-complete sets (comp. [6], p. 215). 
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Thus we obtain 

Theorem II l' . Weak realisation theorem lor continuous mappings ol 
compacta. 

Any continuous mapping I(M) = M' ot a compactum M is topological 
on a suitably selected suhset 8 ot M, such that 8 (and therelore t(8) = 8') 
are topologically-complete sets and 8' is dense in M'. 

4. In 3, we have given a first simple example of a continuous mapping 
I(M) = M' of a compactum for which no realisation (of M' in M) is possible. 
At first sight however one might expect that this situation is altered, if 
we consider a (continuous and) interior mapping, the decomposition of 
which is continuous. The well-known existence of dimension-raising 
interior mappings however makes it clear that in this case too realisations 
are generally impossible. 

But the interior mapping w = Z2 of the circle Jz J = 1 on Jw J = 1 in the 
complex domain has no realisation either (although Mand M', being 
circles, are homeomorphic), as turns out by a slight examination. In this 
case however the reason for the impossibility of a realisation might 
originate from the fact that the inverse set of an image point is not con­
nected (consists in fact of exactly two points). Thus we arrive at con­
tinuous interior monotone mappings. Here again realisations are not 
possible in general, as may be shown by examples of different kind. 

We give a simple but rather typical example. 
Well-known is the example of BROUWER (comp. [2], [3], or [5], p. 118-

120) of three simply-connected disjoint regions Rl' R2 and Ra (any of them 
therefore homeomorphic with a circle region), the boundaries of which 
are identical, while the sum of regions and boundary B fiUs up a square 8. 

Rl> R2 and Ra are mapped topologically on three circle-regions R~, R~ 
and R~. The collection of concentric circles filling up R~, resp. R~, resp. R~ 
are mapped continuouslyon the plane sets y = 0, ° ~ x < 1/2, resp. 
y = 0, l/Z < x ~ 1 resp. x = l/Z. ° < Y ~ 1/2, each circle corresponding 
exactly to one point. The productmapping of Rl' resp. R2' resp. Ra in this 
triod together with the mapping of B on x = I/Z' y= 0, gives us the required 
mapping of 8 on M. This produces an example ot a continuous interior 
monotone mapping ot a square on a triod at which na realisation is possible. 

To prove this last statement we only have to recall to mind the fact 
that any point of B is not accessible from Rl' Rz' and Ra. The possibility 
of realisation therefore breaks down at x = 1/2, Y = 0. It is however worth 
nothing that the inverse set B of x = 1/2, y= 0, is not locally connected. 

In (13) KNASTER gives an example of a plane irreduciblecontinuum 
o which yields an interior monotone mapping of 0 on an interval. 
A realisation is apparently impossible, 0 being irreducible. In this 
example however the inverse sets of the image points are rather patho­
logical continua. In our previous example there is one pathological 
inverse set B. For this reason we might not consider monotone but 
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Peano-monotone, interior mappings. We call a mapping Peano-monotone. 
if the total inverse set of any image point is a locally connected continuurn. 
But even for Peano-monotone interior mappings realisations are generally 
impossible, as D. VAN DANTZIG has pointed out; this may be proved by 
the mapping of the space of tangential line elements on a 2-sphere on 
this sphere by identifying the line elements of a point with this point_ 
The impossibility of a realisation follows from the theorem of POINCARE­
BROUWER on the impossibility of a continuous field of tangential line 
elements on a 2-sphere. 

On the other hand it seems probable to me that Peano-monotone 
interior mappings of plane sets - at least of Peano-continua - always 
have topological realisations. In the general case however there may 
arise great difficulties. Certain retraction-properties of the original sets 
are required. These problems are all combinatorial. 
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