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3. Einstein spaces 

Let a Riemannian metric be given in the space X: ds2 = g ii dx' dxi. 

Then a unique space with a Euclidean connection and with base space X 
is determined by, apart from the assumptions ofsection 2, the properties: 
The development of any differentiable curve Xi = xi(t) in the fibre at one 
of its points, has the same length as the curve itself; the development of 
a broken curve the two parts of which meet under an angle a, consists of 
two parts that meet under the same angle a (LEVI-CIVITA [14]; SCHOUTEN 

[17]: parallellism). We recall the equation 

(23) 

Let us now consider at each point of X a space of constant curvature K, 
osculating at the fixed point of the Euclidean fibre with this Euclidean 
space. The GK-connection defined by the same numbers wi, wjP as those 
to be found in the unique way mentioned above (with respect to given 
preferred coordinates) has the same properties that we mentioned for 
the Euclidean connection. It is therefore the unique GK-connection (non­
Euclidean connection) with these properties. The curvature of the two 
connections are related as follows (Compare (8) and (ll)). 

(24) [Jpkm (K) = [Jpkm (0) - K (wk w;:' - w;:' 04). 

Also, af ter multiplication with w~ w1 and summation over a, {J = 1, ... , n, 

(25) 

Hence: 

(26) 

From (25) follows that the tensor of the non-Euclidean connection of a 
Riemannian space obeys identities analogous to the weIl known identities 
of the Riemann tensor: 

(27) Qiikm (K) def gil)!J1fkm (K); Qiikm (K) = - Qiikm (K) = Qkmii (K). 
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A Riemannian space is caUed an Einstein space of scalar curvature K 
if the right hand side of (26) vanishes. Hence it is characterised by 

Theorem l. The GK-connection of an Einstein space of scalar curvature 
K has a vanishing GK-Ricci tensor. 

A space of constant curvature K has the characteristic property that 
the right hand side of (25) vanishes. It is characterised by 

Theorem 2. The GK-connection of a spa ce of constant curvature K 
is (locally) flat. 

The conformal structure of a Riemannian space determines a unique 
conformal connection (CARTAN [5]), the so caUed normal conformal con­
nection, determined by, apart from the assumptions of section 2, the 
property: The conformal Ricci-tensor vanishes 

(28) 

It seems to be difficult to understand geometrically the contents of 
the equations (28). The normal conformal connection of an Einstein space 
however can be characterised in a satisfactory geometrical way as follows: 
Theorem 1, (21), (22) and (27) yield 

Main theorem 3. The normal conformal connection of an Einstein space 
of scalar curvature Kis the conformal abstractum of the GK-connection of 
this space. 

Theorem 4 (SCHOUTEN, STRUIK [18]). A conformally flat Einstein space 
is a space of constant curvature. 

Proof: Let the scalar curvature of the Einstein space be K. Then the 
GK-connection is flat. (Th. 3). 

Theorem 5 (SCHOUTEN, STRUIK [18]). A three dimensional Einstein 
space is of constant curvature. 

Proof: The conformal curvature tensor of the normal conform al con­
nection of a three dimensional Riemannian space vanishes. Let the scalar 
curvature of the given Einstein space be K. Then the GK-connection of 
this space is (locally) flat (Th. 2 and 3). 

In section 1 we introduced the conformal group of transformations in 
Sn C pn+l. All conformal, Euclidean and non-Euclidean fibres can be 
assumed to be imbedded in the way of section 1 in pn+l's. AIso: the spaces 
with a conformal etc. connection determine (extend) in a unique way (to) 
spaces with a connection and as fibres pn+l'S. We caU those connections 
conformal pn+l-connections. If the connection is obtained from a normal 
conformal connection, then we eaU it also normal. 

In the case of a Euclidean or non-Euclidean connection, the in this 
way constructed space with a pn+l-connection, has in each fibre one point 
of particular interest: the point 'lp of section l. These points map onto 
each other under displacements along arbitrary curves in the base space. 
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They form a cross section, which for these reasons is called a covariant 
constant point of the conformal pn+1-connection. From th. 1 and 3, we 
now have: 

Theorem 6 (SASAKI [15]). The normal conlormal pn+1-connection ol an 
Einstein space ha8 a covariant constant point, which lies outside, on, inside 
the covariant constant Sn in case the scalar curvature K is <, =, > 0 respect­
ively. 

Example: DEBEVER [9] proved, without knowing this theorem of 
SASAKI, its application to the group space of a semi simple group which 
has an Einstein metric according to CARTAN and SCHOUTEN [8]. 

Conversily, if a normal (!) conformal pn+1-connection has a covariant 
constant point, then this point can be used to introduce a covariant 
constant metric in the covariant constant Sn or part of it. The metric and 
the connection, determine a GK-connection of which the GK-Ricci tensor 
vanishes. This connection introduces a metric in the base space, except 
in those points in the fibres of which the fixed cross section intersects the 
"infinite" point(s) of the fibre, infinite with respect to the introduced 
metric in the fibre Sn. Those points of the base space have to be excluded, 
because their distance to ordinary points cannot be defined properly. 
We have: 

Theorem 7 (SASAKI [15]). 1/ the normal conlormal pn+1-connection ol 
a Riemannian n-dimensional space V ha8 a covariant constant point in the 
interior, on, in the exterior ol the covariant constant sn, then V is conlormal 
to an Einstein space with (constant) positive, zero and negative scalar curvature 
respectively. In the last two cases it may happen that some "inlinite" points 
ol the base space have to be excluded. 

In the case of theorem 7 it is obvious that the given Riemannian space 
is conformal to a set of Einstein spaces each of which is obtained from 
o.ne of them by a multiplication of all distances with a positive factor. 
This corresponds with different choices of the metric in the sn C pn+l. 
Compare section 1; with a point tp in pn+1 correspond several metrics in Sn. 

V is said to admit a conformal mapping onto k conlormally independant 
Einstein spaces, if its normal conformal pn+1 connection has k covariant 
constant points not contained in a (covariant constant) projective sub­
space of dimension < k-l. 

A set of co variant constant figures, e.g. points, .sn, a non-Euclidean 
metric in sn, determines the subgroup of those projective transformations 
in one fibre (P'+l) that leave the representative figur.es invariant. All 
figures in this fibre, invariant under this subgroup, are then also repre­
sentative for covariant constant figures. If the subgroup is the identity 
then the connection is flat. 

Suppose for example that a conformal pn+1 connection has two covariant 
.<lonstant points in the interior of Sn. Then all points of the line passing 
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through these two points are also covariant constant (consider represen­
tative figures in one fibre). 

A covariant constant figure is in each fibre represented by a figure 
which is a fortiori without torsion. Sometimes it is also known that in 
each fibre another figure is without torsion e.g. the point of the fixed 
cross section, or the gauges there. Other figures without torsion may then 
be found, eventually all points of each fibre in which case the connection 
is flat. 

These are the ways to prove theorems like: 

Theorem 8. 11 a Riemannian space is conlormal to two conlorrnally 
independant Einstein spaces, then the space is certainly conlormal to an 
Einstein space ol negative scalar curvature (Eventually some "infinite" 
points excluded); 11 one ol the given Einstein spaces has positive scalar 
curvature, th en the given space is also conlormal to an Einstein space with 
vanishing scalar curvature. (Compare SASAKI [15], BRINKl\IAN [I, 2, 3]. 
The proof is left to the reader. 

Theorem 9 (SASAKI [15]). 11 an Einstein space V ol dimension n and 
scalar curvature ]( admits a conlormal mapping onto n-2 conlormally 
independant Einstein spaces (itself included), then it is a space ol constant 
curvature ](. 

Pro of : Consider the GK-connection of the given space. It is easy to 
check that the Euclidean (K = 0) or non-Euclidean (K =1= 0) fibre contains 
at least n-3 independant covariant constant points ("infinite" points 
are not counted). Suppose that in a fibre to be considered the point of 
the fixed cross section is independant of the points re pres enting the 
covariant constant points *. Then at the point of the fixed cross section 
we find n-3 independant directions without torsion. If we choose favour­
able preferred coordinates for that fibre, and coordinates in the base 
space su eh that w't (at that point of the base space) equals bi', then 

(29) at x = xo' Q}km = Q}km (K) = 0 if at least one of the indices > 3. 

(27), (28) and (29) give Qh . .". (K) = 0 at x = xo, i, j, k, m = I, ... n. 
The same holds for all points x for which * holds, and these points are 
every where dense in V, so that continuity of Q;km(K) leads to the theorem. 

We conclude this section with a theorem in the large. A Riemannian 
space is called (metrically-)complete, if any segment of a geodesie is con­
tained in a segment with the same begin point and one unit longer. The 
GK-connection of the Riemannian space has the characteristic property, 
that any curve segment in one fibre, passing through the point of the 
fixed cross section, which does not contain "infinite" points of the fibre, 
is the development of some curve in the base space. Suppose the given 
spa ce is an Einstein space of non-positive scalar curvature. Consider the 
normal conformal pn+l connection. From the completeness of the given 

100 
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space and the theorem 3 follows that the "infinite" covariant constant 
point(s) in the covariant constant S" are determined by the normal con­
formal connection and the base space as point set. Hence the point "P of 
section 1 is determined by the conformai structure. The metric in each 
fibre is determined by "P, but for the choice of a unit of distance. The same 
holds true for the metric in the base space. Therefore: 

Theorem 10. A conformal mapping of a metrically complete Einstein 
space of non-positive scalar curvature onto another metrically complete 
Einstein space is the product of a (locally- )congruent mapping and a 
multiplication of the metric (ds2 ) with a constant positive factor. 

Example: A conformal mapping of the Euclidean space onto itself, 
or onto a locally Euclidean n-dimensional torus. 

4. Einstein spaces and projective connections 

If: the reference space for the fibres of a fibre bundle with an n-dimen­
sional base space X, is an n-dimensional projective space; the group 
analogous to H in section 2 is the group of projective transformations ; 
and a displacement in the fibre bundie is defined as in section 2; then a 
space with a projective connection is defined. The existence of a fixed 
oblique cross section without torsion is assumed. 

Let us consider the reference space pn. The Euclidean space is obtained 
from pn by a choice of: a hyperplane pn-l of excluded "infinite" points 
in pn; a polarity with respect to an imaginary quadric in pn-l; a unit of 
distance in pn minus pn-l. 

The non-Euclidean space of constant negative curvature is obtained 
by a choice of: a real quadratic hypersurface S .. -1 of the signature of a 
sphere in pn; a unit of distance for the interior of this sphere. (The other 
points of pn are called "infinite" points.) 

The non-Euclidean space of constant positive curvature is obtained 
by a choice of: an imaginary quadratic hypersurface in pn; a unit of 
distance. 

Vice versa these spaces can always be considered to be imbedded in 
the described way in a uniquely determined pn. Summarising, in all three 
cases there is an (eventually degenerated) hypersurface of the second 
class, and a unit of distance. 

Because the Euclidean and non-Euclidean groups (GK ) are subgroups 
of the group P of projective transformations operating in the same space 
or a uniquely determined space obtained by addition of some "infinite" 
points, a definition of the projective abstractum of a Euclidean or non­
Euclidean connection can be given, analogous to the conformal abstractum 
of section 3. 

The system of geodesics of a Riemannian space determines one unique 
"normal" projective connection. This connection obeys apart from the 
conditions allready mentioned: a condition which has analogy with the 
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fourth assumption (16) of section 2; and a condition of vanishing of a 
projective Ricci-tensor analogous to (28). (CARTAN [7]). It is difficult to 
understand geometrically th is normal projective connection. For Einstein 
spaces of scalar curvature K however a satisfactory geometrical charac­
terisation can be given: 

M ain theorem 11. The normal projective connection ol an Einstein space 
ol scalar curvature Kis the projective abstractum ol the G K-connection. 

The proof is analogous to the pro of of main theorem 3. 

The equality of the so ealled (normal) projeetive curvature tensor P~km' the 
(normal) eonformal eurvature tensor O}km and the Greurvature tensor (25) of 
an Einstein space (K), ean easily be eheeked from the formulas for P}km and O}k'1'" 
(ErSENHART [13], SCHOUTEN-STRUIK [19]) 

As a corollary of theorem 11 we have for example: 

Theorem 12 (SASAKI-YANO [16]. The normal projective connection ol 
an Einstein space has a covariant constant hypersurlace ol the second cZass. 
If the scalar curvature is K, then the hypersurface has the normalised 
equation m homogeneous hyperplane coordinates for one fibre p" 

(30) 

Vice versa: if the normal projective connection of a Riemannian space 
V does have a covariant constant. figure of t.he kind (30), then the con­
nection has a covariant constant Euclidean or non-Euclidean metric in 
the fibres, with the help of which an agreeing Einstein metric in the base 
space can be introduced. V then admits a mapping with preservation of 
geodesics (a projective mapping) onto that Einstein space (SASAKI [16]). 
As with the analogous theorem on conformal connections, it may happen 
that some points, the "infinite" points, have to be excluded from the 
new space. Here however worse may happen: In case K < 0, the theorem 
does not hold, if all points of the fixed cross section are exterior of the 
covariant constant (infinite) S1l. 

The proof of the next theorem is representative for the proofs of a class 
of theorems. If the Einstein spaces which are given have non-vanishing 
scalar curvature, then a fairly simple pro of can be given. The "exceptional" 
cases when some of the Einstein spaces have vanishing scalar curvature 
make the proofs lengthy. 

Theorem 13. 11 a loufdimensional Einsfein space admits an essentially 
projective mapping onto another lour dimensional Einstein space, then it is 
a space ol constant curvature. 

A mapping is here called essentially projective, if it is not the product 
of a congruent mapping and a multiplication of all distances with a 
constant factor; or, what amounts to the same, if the two metrics of the 
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space with the common normal projective connection realise by different 
covariant constant hypersurfaces of class two. (Note that we deal with local 
properties, that is with a small neighborhood of the base space, so that 
topological difficulties do not occur here). 

Proof: Let the scalar curvatures of the two Einstein spaces be K 
and K'. 

Case A: K =I=- 0, K' =I=- 0. The normal projective connection has two 
covariant constant non-degenerated hyperquadries. Also the pencil of 
hyperquadrics with these two as basis, is covariant constant. Considera 
fibre in which the point of the fixed cross section is not conta.ined in 
any of the two hyperquadrics *. By assumption this point is without 
torsion. Also the hyperquadric of the pencil which passes through this 
point (in the fibre under consideration) is then without torsion, and the 
same is true for the hyperplane (of dimension 3) tangent at this point to 
the hyperquadric. We assume the existence of this hyperplane *. In view 
of main theorem 11, the GK-connection of the first Einstein spa ce has at 
the .point of the base space under consideration a threedimensional hyper­
plane through the point of the fixed cross section without torsion. The 
direction perpendicular to this hyperplane at the same point is also without 
torsion. The rest of the proof is the same as in the proof of theorem 9. 

Case B: K =I=- 0, K' = 0. The normal projective connection has a co­
variant constant non degenerated hyper quadric and a covariant constant 
hyperplane. The hyperplane counted twice may serve as a second hyper-
quadric. The rest of the proof is as in case A. . 

Case G: K = 0, K' = 0. If the two covariant constant hyperplanes do 
not coincide, then they are the base of a pencil of covariant constant 
hyperplanes. The rest of the proof is then as before. Now suppose that 
the covariant constant hyperplanes coincide. The covariant constant 
imaginary quadrics in this hyperplane have for suitable homogeneous 
coordinates the equations: 

(31 ) 
X2+y2+Z2+t2= 0, ax2+by2+cz2+dt2= 0, 

a, b, c, d > 0, a + b + c + d = 4. 

They determine invariantly (hence also covariant constant) a point 
in case the four numbers a, b, c, d are not equal in pairs. The covariant 
constant point determines in almost every fibre a line without torsion : 
the line through this point and the point of the fixed cross section. The 
rest of the proof is as before. 

In case the numbers a, b, c, d are equal in pairs (they are not all mutually 
equal, because then the given mapping would not be essential) the norm al 
projective connection has two covariant constant lines in the covariant 
constant ("infinite") hyperplane. The Euclidean (Go) connection of say 
the first space (K = O) has two perpendicular co variant constant two­
directions. For suitable coordinates, for which gij = !5'j' i\ gjk = ° at 
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x = xo' in a neighborhood of a point Xo of the base space, the (ordinary !) 
Riemann tensor then obeys, apart from 

hence this tensor vanishes. q.e.d. 
The generalisation to higher dimensions (compare theorem 9) oftheorem 

13 holds true and is easy to prove if the Einstein spaces under con­
sideration have non-vanishing scalar curvature. Otherwise the proofs 
get complicated by the large number of details. 

We conclude section 4 with the statement of a theorem analogous to 
theorem 10 

Theorem 14. A projective mapping of a metrically complete Einstein 
space of negative (vanishing) scalar curvature onto another suchEinstein space 
is the product of a (locally-)congruent mapping and a multiplication of all 
distances with a constant factor (is an attine mapping, that is: it preserves 
ratios of lengths of segments of any geodesic). 

July 1950. Technische Hogeschool, Delft 
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