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AN ARITHMETICAL THEOREM CONCERNING LINEAR
DIFFERENTIAL EQUATIONS OF INFINITE ORDER

BY

J. POPKEN

(Communicated by Prof. J. G. vaAN DER CORPUT at the meeting of November 25, 1950)

It is a matter of common knowledge that analysis often plays an
important part in deriving purely arithmetical results. However, by
combining in the same manner analytical methods and ideas from the
theory of numbers, one is often led to theorems of mixed arithmetical
and analytical character. The theorems derived in this paper are of this
type.

In order to state our principal result, it is convenient to introduce
first for a given integral function y(z) the notion of an ““exceptional point”;
we shall call a complex number ¢ an exceptional point for the function
y(2) if both values { and y({) are algebraic numbers. If u is a positive
integer, such that ¢, y(¢), ¥'(),...,y* V({) all are algebraic, but y*({)
transcendental, then yx will be called the “multiplicity’ of the exceptional
point . If possibly £ and all values y(Z), ¥'(),. .. are algebraic, then the
multiplicity of x4 will be infinite by definition.

Theorem I. Let the integral function
® L . [ —
y@) =3 e, lim sup Vo] <4,
h=0 : h—>00

where q denotes an arbitrary positive number and all coefficients cy, ¢y, Cy,. . .
are algebraic, satisfy a linear differential equation of infinite order

ayR)+ 2,y (2)+ a,y" () +... =0,

with constant coefficients a,, a,, ay,. .. not vanishing simultaneously. Let the
corresponding characteristic function

ag+ a; t+ a, 2+ ..

be regular in the circle |t| =< q and let v denote the maximum of the multi-
plicities of its zeros in the region 0 < [t| < q.

Then the following two assertions are true:

1. If y(z) has v or more exceptional points different from zero (counting
a point of multiplicity u also u-times), then y(z) necessarily is a polynomial
with algebraic coefficients.
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2. If ag #£ 0, then every exceptional point different from zero and with
multiplicity p necessarily is a zero of y(z) with the same multiplicity u. (This
assertion still holds if x is infinite.)

Remark. It follows from assertion 1: If the transcendental function
y(z) fulfills the conditions of our theorem and if moreover the zeros of
the characteristic function a,+ a, ¢+ a,#>+... are simple (hence v= 1
in the preceding theorem), then y({) is transcendental for every algebraic
value of ¢ £ 0.

We give a proof of this theorem in § 1; some of the ideas we use are
due to McMiLLAN, who stated a theorem closely related to ours in an
earlier paper !). However the result obtained by McMILLAN is erroneous
as will be shown in § 2. In § 3 we give some interesting applications of
our theorem I. In this manner we obtain three known theorems, respec-
tively due to ITIHARA, to DiETRICH and RoseENTHAL and to R. Rapo.
Moreover we find a new result concerning linear differential-difference
equations (theorem II). The paper closes with some references.

§ 1. The principal tools we need for the proof of theorem I are:

a) The LINDEMANN-WEIERSTRASS theorem: Let a; ay,..., a, denote
different algebraic numbers, let By, Ps,..., P, denote arbitrary algebraic
numbers. If

fre + Boe+ ... + femn=0,
then mnecessartly fy= By=...=f,= 0.

b) The analogous but elementary theorem: Let gy, g,...,0, denote
different numbers, let Pi(2), Py(2),. . ., P,(2) denote arbitrary polynomials. If

Py (2) €% + Py (2) €%* + ... + P, (2) en* =
then mecessarily Py(z) = P,y(z) =...= P,(z) = 0.
c) A theorem essentially due to SCHURER 2): Let the integral function

(o] h_
ve=2.0% » mawVial=g

satisfy a linear differential equation of infinite order
3Y2)+ 3,y (2)+ ay"(z)+... =0,

with constant coefficients not vanishing simultaneously. Let the characteristic
function

A(t)=apg+ a; t+ a, 2 +. ..
be regular for |t| < gq.

1) For references see the list at the end of this paper.
?) See also the papers of PERRON and SHEFFER.
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If A(t) has no zeros in the circle |t| < q, then mnecessarily y(z) = 0.

In all other cases there exists a polynomial by+b, t+. .. + by t* with zeros
(also with respect to their multiplicities) identical with those of A(t) in the
circle |t| = q. Then y(z) satisfies the linear differential equation of finite
order

(1) boy(2)+ b1 y'(2)+ ... + b y¥(z)= 0.
From the theorems b) and ¢) we deduce the following lemma:

Lemma: Let the integral function
o] h_
Y(2) = Z%%%O , lim sup [e,| < g,
k=0 ' h—00

with algebraic coefficients c,, ¢y, Co,. .. Satisfy a linear differential equation
of infinite order
a3 y@2)+ a1y’ @)+ ay'@)+ ...=0,
with constant coefficients not vanishing simultaneously and such, that the
characteristic function
ag+ a;t+ a2+ ...
s regular for |t| <q.
Then y(z) can be written

y@) = 3 P e

Here g, 0s,. . ., 0; represent different algebraic numbers, zeros of the char-
acteristic function ag+ a,t+ a, t*+ ... in the circle [t| < q ; moreover every
P,(z) is a polynomial with algebraic coefficients and of degree v; — 1 at most,
v; denoting the multiplicity of the zero o, (t=1, 2,...,9).

Proof. 1. The function y(z) considered here satisfies all the hypo-
theses of ScHURER’s theorem c¢). Now y(z) % 0, hence the characteristic

function a,+ a, ¢+ a,t*+ ... must have zeros in the circle [t| < g. Let
01, 02- - -, 0, Yepresent these zeros and let v, »,,. . ., », denote their respec-
tive multiplicities. Let by+ b, t+ ... + b,t* be a polynomial with zeros
01> O+« -» 0, Of multiplicities vy, v,,...,%, (by 7% 0). Then, on account of
SCcHURER’s theorem, y(z) satisfies
(2) boy()+ b1y’ R)+ ... + by (R)=0 (b F#0).

Hence y(z) can be written

8

3) y(E) = 3 Po(z) ot

where every P (z) represents a polynomial of degree v, — 1 at most
(c=1,2,...,8). .

2. Now we shall use the condition, that all coefficients ¢, ¢;, ¢,,... of
y(z) are algebraic. In stead of (2) we may write

(@) L [y(z)] =0,
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if we introduce the linear differential operator

L=bo+b1D+ ...+bk.Dk.

The k + 1numbers by, b,,. . ., b, have a linear independent basis 7,, 7, . . ., 7,
with respect to the field of algebraic numbers; hence
(5) by=b,1,+ b1+ ...+ b, 7, (x=0,1,2,...,k)
with algebraic b,4, b,s,. . ., b,,. It follows
(6) L=v Li+ 1L+ ...+, L,
if we put '
Ly=1by,+ b, D+ ... + b, D¥ (e=1,2,...,7).
Now all coefficients in y(z)= ¢, + clli! + czg—’! + ... are algebrgic; also
the coefficients by, by,,. . ., b, in the above operator L, are algebraic. It

follows easily

L, [Y(@)] = Cop + €10 15 + Cao 2+ -ov

with algebraic coefficients cg,, ¢y,, Cy,- . .. Hence, taking account of (4)
and (6),

CaTi+ Cop T+ ...+ €, T,= 0,

cuTit et ...+ 6,7,=0,

Here 1, 1,,..., 7, are linearly independent; it follows therefore
6012 608= e — CO'= 0,
Cp=1Cp= ... =¢€, =0,

or

L,[y(2)] =0 for p=1,2,...,r.

Every linear differential operator L,= by, + by, D+ ...+ by, D* has
algebraic coefficients; there is at least one whose coefficient b,, does not
vanish (on account of (5) and b, 7 0). Let by+ b, D+ ... + b, D* denote
this operator. Hence y(z) satisfies a linear differential equation

(7) byy(2)+ by y'(2) + ... + b y®(z)= 0

with algebraic coefficients by, by, . . ., b, and b, 7 0.
3. The auxiliary equation

bo+ byt+ ...+ b,5=0

of (7) clearly has algebraic roots, say g, @s- .., 0;; 16t py, tg,. - ., i
denote their respective multiplicities. Hence

mt ppt .+ u=k,
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‘and we can write
L = -
®) ye) = 3 Pi(a) e,

where P,(z), Py(2),. .., P,(2) are polynomials. We shall prove, that these
polynomials have algebraic coefficients.
The general solution

(9) ) = vo+ y1 0+ va g + oo

of the equation (7) is given by

10 @ =3 @ =3 e (14 i+ am+...)
n 1 2 =4 2 iy T 015 s
where

IL(2) = ps + Pz + ... + Pipp—1 2=t

are polynomials.
Equating corresponding coefficients in (9) and (10) we obtain

i
Yo= 2 Pio
=51
. =
Y1 2
(11) 1! lgl (plo 1! + pll)
V-1 __ < oi! 052
i =2, (P gy + P gy + )
This constitutes for given y,, ¥4,. .., ¥, & system of & linear equations
in the uy +us+ ...+ u;= k quantities pyy, Pus- - - Pap;—1 (=1, 2,...,1).
For yo=y,= ... = y,_; = 0 the differential equation (7) has only the

solution 7(z) = 0; hence in this case the (homogeneous) system (11) has
only the trivial solution

Po=Pun=.=Piuy-1=0 (A=12,...,1).

1t follows, that the determinant of the system (11)

1 0 1 0 1 0

P 3 e

o ! ! !

P S st o7t ot it
f—1)! (k—2)! " =1 (k—2)! " (k=1)! (k—2)1
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does not vanish. Moreover all elements of this determinant are algebraic
numbers. In the special case, that y,, y,,..., 7., are equally algebraic,
the solution pg, Pay,- - ., Pa,u;—1 Of (11) necessarily must consist of alge-
braic numbers. Taking for g, ¥y,...,9,_, the algebraic coefficients
Cgs €1+ - +5 Gy Of y(z) we obtain as the solution exactly the coefficients of
the polynomials P;(z), Py(2),. .., Py(z) from (8). Hence: In

131 (2) ge

M-~

(8) Y(z) =

A
01> 0, - - - 0; are different algebraic numbers and the polynomials
ﬁl(z), Pz(z)" Biey Pl(z)

have algebraic coefficients.

4. We observe that the righthand-sides of (3) and (8) are identical
functions of z. Using the elementary theorem b) we may suppose, without
loss of generality,

(12) Q'i=§i, Pi(z)EPi(Z)¢O (t=1,2,...,9)
and
P2)=0(c=7+1,7+2,...,8), Py2)=0 (A=j+ 1,§+2,...,])

for a positive integer j =< Min (s, /). Hence

y@) = 5 Pi(2) ev.

i=1
By definition g, g,,. . ., ¢; represent zeros of multiplicities vy, v,,. .., »; of
the characteristic function a,+ a,¢+ a,#*+ ... in the circle [t| =gq.

Moreover every P,(z) is a polynomial of degree », — 1 at most (see section

1 of this proof). On the other hand by (12) and section 3 the numbers

01, 0z, - - -, 0; and the coefficients of P,(z), Py(2),. .., Pj(z) are all algebraic.
This completes the proof of our lemma.

Proof of theorem I. Without loss of generality we may assume
y(z) # 0. Obviously the function y(z) considered here fulfills all conditions
of the preceding lemma. Hence

Il

)
(13) ye) = 3 Pyl e,
where g,, 05,. . ., 0; denote different algebraic zeros of the characteristic
function in the circle [t| < g¢; moreover every P,(z) represents a poly-
nomial with algebraic coefficients of degree »; — 1 at most, »; denoting
the multiplicity of the zero g;.
Let ¢ £ 0 be an exceptional point of multiplicity u; hence

&y, y' (L), Y ()
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are algebraic simultaneously. From (13) it follows

—y) 0+ 5 Py e — o0
- +z§1 P +91 1(5)) e =0

(14)
— O O+ 3 (P + (7)) e PO+t
+ <Zt}) ei™ Pi(C)) %t = 0.

Now we are in a position to apply the LINDEMANN-WEIERSTRASS theorem
on each of the u equations of (14). For in these equations the “‘exponents”
018, 058, . ., 0; are different algebraic numbers and the ‘“coefficients”

—y0), Pi0) 5~y (PUO+ e Pi(@) 5 oo
—ye @), (P + (*77) e P2 + e+ (7)) @7 Putd)

all are algebraic.

For the application of the said theorem it is convenient to consider two
special cases separately:

Case I. Let all numbers gy, 05,. .., 0; be different from zero. Then it
follows from (14)

y()=0, P;()=
Y(0)=0, Pi(l)+ 0; Pi(H)=0

YD) = 0, P¥-() + ( ) )  PU2() + . +< 1) 0" P (0) =

for 1=1,2,...,4, hence

(15a) YO =Y = .=y ) =0

and '

(15b) P,(5)y=Pyl)=...=Pr1(¢) =0 E=1; 2, cuss)s

Case II. Let one of the numbers gy, 0,,...,0; vanish; say o,= 0.
Then we obtain from (14) in the same manner

=y + P (D=0, Pi()) =
Y0+ Pi(l)=10,P()+ e Pi(H)=0

—y @)+ PE@) = 0, PO + (7)) e PR + e+

+ (A7) e P =0
105
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for i=2,3,...,7, hence
(16) P,(5)=Pi({)=...=P¢1()=0 (2=2;8, :s59)s

By hypothesis v is the largest multiplicity of the zeros of the charac-
teristic function in the region 0 < || < ¢; hence in case I every poly-

nomial P,(z) is at most of degree », — 1 <» — 1 for 1= 1,2,...,j and
in case II the same assertion holds for 1= 2, 3,...,7.

Now we prove the two assertions of our theorem:

1. Suppose there exist exceptional points {;, &,,. . ., {, different from

zero and with multiplicities u,, us,. .., p, such that
pat pg+ oty =

We have to show, that y(z) is a polynomial with algebraic coefficients.

In case I every polynomial P,(z) is at most of degree» — 1 (2= 1,2,...,);
on the other hand applying (15b) with {=¢{, and u=p, (x=1,2,..., k)
we see, that every polynomial P,(z) at least has » zeros, hence P;(z) = 0
and therefore y(z) = 0, but this gives a contradiction, for we assumed
y(z) # 0.

In case II we similarly apply (16) in stead of (15b) and we obtain
P,(2) =0 for ¢=2,3,...,j, hence y(z) = Py(z), a polynomial with alge-
braic coefficients.

2. If ay; £ 0, then ¢t= 0 is not a zero of the characteristic function
ag+ a;t+ a,t*+ ..., hence gy, g,,.. ., 0; all are different from zero and
we have case I. If { 7~ 0 is an exceptional point with multiplicity u, then
we derive from (15a), that { necessarily is a zero of y(z) with multiplicity u
(for y*™(Z) is transcendental and therefore different from zero).

§ 2. In 1939 McMiLLAN stated the following theorem, closely related
to our theorem:
“Given the set of algebraic numbers a, (n= 0, 1, 2,...) of which an
infinite number are non-vanishing, and such that
lim sup |a,|'" < .
n—>00

Let there be a set of constants ¢, (n= 0, 1, 2,...), at least two of which
are non-vanishing, such that the function

g(t) = § c, t*

n=0

is analytic for |t| < R where R > g, and has zeros for |t| < ¢ only at the
points t={, (k= 1, 2,..., N) respectively of multiplicities »,, where the
. are algebraic numbers. If now

(=]
Z Cp Aptp= 0
n=0
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for all p= 0,1, 2,..., then the function
_ Roayan
F(2) _—_"go T

takes on a transcendental value for every algebraic z 7= 0.”
However this assertion certainly is not true, as is easily seen from the
following example: Take

a,=n—1m=0,1,2,...),0=1,¢cp=1,¢,=—2,¢c,= Leg=1¢=...=0.

Then it follows

g(t) = 1-2¢ 4+, N=1, Clz Is coa’p+cla1ﬁ+1+02a‘p+2=0 (P= 0,1,2,...),

so that all hypotheses of McMILLAN’s theorem are satisfied. But now
Fio)=3 (n—1) 5,

hence

not a transcendental number.

§ 3. A4) Our theorem I clearly is a generalization of the following
result of ITIHARA (see the joint paper of ITiHARA and OrsHr in the list of
references): Let the transcendental function

] zh

ye) = 3 ot

h=
with algebraic coefficients ¢, ¢;, c,, . . . satisfy a linear differential equation
Y@+ 2y @)+ ... +a,y"E) =0,

with constant algebraic coefficients a,, a,,. . ., a,, then y(z) is a transcen-
dental number for every algebraic value of z with exception of n values
for z at most.

B) We can apply theorem I to the differential equation

y() — y"(@) = 0.
Obviously the n functions

2v 2vtn zv+2n

D) =5+ o T e

(r=0,1,...,n—1)
are all integrals of this equation. Hence every function
Y(z)=cp+ ¢ %-{—czg—j—i- —
where ¢, ¢y, Cp,. .. constitute a periodic sequence of complex numbers

with a “length” n of the period, satisfies the equation. If moreover all
coefficients ¢, ¢;, C5,. . . are algebraic and do not vanish simultaneously,
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then we can apply the Remark to theorem I (the zeros of the corresponding
characteristic function 1 — ¢* being simple). It follows, that y(z) is a
transcendental number for every algebraic value of z £ 0.

From this we easily obtain the following theorem of DikTrRICcH and
ROSENTHAL:

If the coefficients c, in

zh

Mg

y(2) =

h

Ch

>

are algebraic and form a periodic sequence from some h on, then y(z) is a
transcendental number for every algebraic value of z 7 0, except in the
trivial case that y(z) is a polynomial.

C) We now show the following theorem of R. Rapo:

Suppose that the real functions f,(x), fo(),. . ., f.(x), not all identically zero,
of the real variable x satisfy the system of differential equations

an f@=3entls)  (r=1,2..,m)

tn which the coefficients c,, are rational numbers satisfying

€17 C2 - - - Cpm
021 . . . . . 62" # O
Gig s w = % 5 G

Then, for every rational number x, with possibly a single exception, at least
one of the numbers

fl(xo)’ fz(xo), R ] fn(xo)

18 trrational.

Proof. Let a and g be different rational numbers, and assume, that
the 2n numbers

fi(a), faa),. . ., fala); F1(B), fa(B),- - -, FulB)

are rational. Then we will obtain a contradiction.
Without loss of generality we may suppose a= 0 and f,(x) = 0.
From (17) it follows for A= 0,1, 2,...

fr+0(z) = 3 e,, fP(2),

where the coefficients c,, are rationals; hence

O fH0) O s )y
1B » 1B » 4B . ... ’

all are rational numbers.
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From (17) it follows on the other hand by a well-known method, that
the n functions f,(z), fo(x),. . ., f,(z) all are integrals of a linear differential
equation with constant coefficients

Y@+ ay' @ +... +a,y"(@) =0,

where a,= det. |c,,| % 0 and a,= (— 1)".
Now we are in a position to apply theorem I on the integral function

h@ = HO) + F0) £+ 1O Z + ...

with rational coefficients and with an exceptional argument § of infinite
order. By the second assertion of this theorem we obtain

LB)=h(B =HB)=...=0,

hence f,(x) = 0; a contradiction.

Obviously it now is easy to extend Rapo’s theorem.

D) Tt is possible to apply theorem I to the solutions of certain func-
tional equations. As an example I consider in the next theorem a certain
class of solutions of a linear differential-difference equation with constant
coefficients.

Theorem II3). Let the integral transcendental function

(18) Y=ot oL gt Gt e 5 C= O,

where q 18 an arbitrary positive number and where all coefficients c,, ¢, Cs, . . .
are algebraic, satisfy a linear differential-difference equation

(19) i' 5: A#v y(")(z + wv) =0,

u=0v=0

where the constants A, do not vanish simultaneously and where wgy, w,,. . ., w,
are different numbers.

Then y(z) s a transcendental number for every algebraic value of z with
exception of a finite number of values for z.

If moreover i Ay, #~ 0, then these exceptional points, which differ from 0,
v=0

necessarily are zeros of y(z).

Proof. We have for u=0,1,...,m and »=10,1,...,n
YOt 0) = Y6 + Ty @ + 5 v + e
Substitution in (19) gives a linear differential equation of infinite order
2 Y@+ ay'@@)+ ay'(x)+ ... =0,

3) This theorem was communicated without proof on September 1, 1950, at
the International Congress of Mathematicians, Cambridge (Mass.).
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with characteristic function

n

8o+ attattt..=3> 5 A, (r+ o+ ol )

p=0v=0

m n
=3 3 A4,ret

u=0v=0

Clearly

n
ag= > A,,.

v=0

Now y(z) fulfills all conditions of theorem I and the assertions of theorem IT
are immediate consequences of those of theorem I.

10.
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