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AN ARITHMETICAL THEOREM CONCERNING LINEAR 
DIFFERENTIAL EQUATIONS OF INFINITE ORDER 

BY 

J. POPKEN 

(Communicated by Prof. J. G. VAN DER CORPUT at the meeting of November 25, 1950) 

It is a matter of common knowledge that analysis of ten plays an 
important part in deriving purely arithmetical results. However, by 
combining in the same manner analytical methods and ideas from the 
theory of numbers, one is of ten led to theorems of mixed arithmetical 
and analytical character. The theorems derived in this paper are of this 
type. 

In order to state our principal result, it is convenient to introduce 
first for a given integral function y(z) the notion of an "exceptional point"; 
we shall call a complex number C an exceptional point for the function 
y(z) if both values C and y(C) are algebraic numbers. If ft is a positive 
integer, such that C, y(C), y'(C), . .. , y(p-l)(C) all are algebraic, but y(P)(C) 
transcendental, then ft will be called the "multiplicity" of the exceptional 
point C. If possibly C and all values y(C), y'(C), . .. are algebraic, then the 
multiplicity of ft will be infinite by definition. 

Theorem I. Let the integral tunction 

00 h h 

y(z) = L Ch X, , lim sup VïëJ < g, 
h-O' h->oo 

where q denotes an arbitrary positive number and all coefficients Co' Cl> C2, • •• 

are algebraic, satisfy alinear differential equation of infinite order 

ao y(z) + 8.t y'(z) + a2 y"(z) + ... = 0, 

with constant coefficients ao' al> a2 , • •• not vanishing simultaneously. Let the 
corresponding characteristic function 

ao + al t + a2 t2 + ... 
be regular in the circle It I < q and let v denote the maximum of the multi­
plicities of its zeros in the region ° < It I < q. 

Then the following two assertions are true: 

l. 1f y(z) kas v or more exceptional points different trom zero (counting 
a point of multiplicity ft also ft-times), then y(z) necessarily is a polynomial 
with algebraic coefficients. 
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2. 11 ao -=I=- 0, tken every exceptional point different Irom zero and witk 
multiplicity ft neceB8arily i8 a zero ol y(z) witk tke 8ame multiplicity ft. (This 
assertion still holds if ft is infinite.) 

Remark. It follows from assertion 1: If the transcendental function 
y(z) fulfills the conditions of our theorem and if moreover the zeros of 
the characteristic function ao + 8-:t t + a2 t2 + . .. are 8imple (hence 'JI = 1 
in the preceding theorem), then y(C) is transcendental for every algebraic 
value of C -=I=- 0. 

We give a proof of this theorem in § 1; some of the ideas we use are 
due to McMILLAN, who stated a theorem closely related to ours in an 
earlier paper 1). However the result obtained by MCMILLAN is erroneous 
as will be shown in § 2. In § 3 we give some interesting applications of 
our theorem I. In this manner we obtain three known theorems, respec­
tively due to ITIHARA, to DIETRICH and ROSENTHAL and to R. RADo. 
Moreover we find a new result concerning linear differential-difference 
equatioIis (theorem II). The paper closes with some references. 

§ 1. The principal tools we need for the proof of theorem I are: 

a) The LINDEMANN-WEIERSTRASS theorem: Let al ~, ... , a,. denote 
different algebraic numbers, let PI' P2' . .. ,Pn denote arbitrary algebraic 
numbers. 11 

PI ea
, + P2 ea

, + ... + Pn e"n = 0, 

tken neceB8arily PI = P2 = ... = Pn = 0. 

b) The analogous but elementary theorem: Let (h, e2' • .. ,en denote 
different numbers, let Pl(z), P 2(z), . .. , Pn(z) denote arbitrary polynomials. 1f 

PI (z) eQ
,· + P 2 (z) eQ

,· + ... + Pn (z) een" = 0, 

tken neceBsarily Pl(z) - P 2(z) = ... - Pn(z) - 0. 

c) A theorem essentially due to SCHÜRER 2): Let tke integral function 

satisfy alinear diUerential equation ol infinite order 

ao y(z) + ~ y'(z) + a2 y"(z) + ... = 0, 

witk constant coefficients not vanisking simultaneou8ly. Let tke characteristic 
function 

A(t) = ao+ 8-:t t+ a2 t2 + ... 
be regular for Itl < q. 

1) For references see the list at the end of this paper. 
2) See also the papers of PERRON and SHEFFER. 
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If A(t) has no zeros in the circle Itl < q, then necessarily y(z) = o. 
In all other cases there exists a polynomial bo +bl t + ... + bk r with zeros 

(also with respect to their multiplicities) identical with those of A(t) in the 
circle Itl::;: q. Then y(z) satisfies the linear differential equation of fini te 
order 

(1) bo y(z) + bI y'(z) + ... + bk y(kl(z) = O. 

From the theorems b) and c) we deduce the following lemma: 

L e m ma: Let the integral function 

with algebraic ooefficients co' Cl> c2, . .. satisfy alinear differential equation 
of infinite order 

09,0 y(z) + ~ y'(z) + 09,2 y"(z) + ... = 0, 
with constant coefficients not vanishing simultaneously and such, that the 
characteristic function 

is regular for Itl < q. 
Then y(z) can be written 

Here (h, e2' . .. , ei represent different algebraic numbers, zeros of the char­
acteristic function 09,0 + ~ t + 09,2 t2 + ... in the circle It I < q,. moreover every 
Pi(z) is a polynomial with algebraic coefficients and of degree Vi - 1 at most, 
Vi denoting the multiplicity of the zero ei (i = 1, 2, ... , j). 

Proof. 1. The function y(z) considered here satisfies all the hypo­
theses of SCHÜRER'S theorem c). Now y(z) 'i= 0, hence the characteristic 
function 09,0 + al t + 09,2 t2 + ... must have zeros in the circle Itl < q. Let 
el' e2'· .. , e. represent these zeros and let VI' V2, . .. , v. denote their respec-
tive multiplicities. Let bo + bI t + ... + bktk he a polynomial with zeros 
el' e2'· .. , e. of multiplicities VI' v2, . .. , Vs (bk #- 0). Then, on account of 
SCHÜRER'S theorem, y(z) satisfies 

(2) bo y(z) + bI y'(z) + ... + bk y(kl(Z) = 0 
Hence y(z) can be written 

• 
(3) y(z) = L P,,(z) eQ,,", 

,,~l 

where every P,,(z) represents a polynomial of degree Va - 1 at most 
(a= 1,2, ... , s). 

2. Now we shall use the condition, that all coefficients co' Cl' c2 , • •• of 
y(z) are algehraic. In stead of (2) we may write 

(4) L [y(z)] - 0, 
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if we introduce the linear differential operator 

L = bo + bI D + ... + bIJY'. 

The k + 1 numbers ho, bl> . •. , bk have a linear independent basis Tl' l's, ••• , T~ 
with respect to the field of algebraic numbers; hence 

(5) (,,= 0,1,2, ... , k) 

with algebraic bHl, b,.z, . .. ,bH'. It follows 

(6) 

if we put 

((] = 1,2, ... , r). 

Now all coefficients in y(z) = Co + Cl TI + Cl! ~ + ... are algebraic; also 

the coefficients boQ , bl~' . . . , bkQ in the above operator LQ are algebraic. It 
follows easily 

with algebraic coefficients c"", clQ' cllQ' •••• Rence, taking account of (4) 
and (6), 

COl Tl + COllI l's + ... + CO. T. = 0, 
Cu Tl + ·Cts Tl! + ... + Cl. T. = 0, 

Rere Tl> 1'2' ••• , T. are linearly independent; it follows therefore 

COl = Cos = ... = CO. = 0, 
Ctl = C12 = ... = c l .= 0, 

or 
Lil [y(z)] = 0 tor (]= 1,2, ... , r. 

Every linear differential operator LQ = bOQ + blP D + ... + bkP Dk has 
algebraic coefficients; there is at least one whose coefficient bkQ does not 
vanish (on account of (5) and bk #- 0). Let bo + bl D + ... + bk Dk denote 
this operator. Hence y(z) satisfies alinear diUerential equation 

(7) boY(z) + bI y'(z) + ... + bk y(kl(Z) = 0 

witk algebraic coefficients bo, bI' . . . , bk and bk #- o. 
3. The auxiliary equation 

bo + bI t + ... + bk tk = 0 

of (7) clearly has algebraic roots, say el> e2" .. , el; let f11., fkI., . .. , #1 

denote their respective multiplicities. Rence 

#1 + #2 + ... + #1 = k, 
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and we can write 

(8) 

where Pl(z), P2(Z)" .. , P1(z) are polynomials. We shall prove, that these 
polynomials have algebraic coefficients. 

The general solution 

(9) 
Z Z2 

1J(z) = Yo + Yl Ti + Y2 2i + .. . 
of the equation (7) is given by 

where 

are polynomials. 
Equating corresponding coefficients in (9) and (10) we obtain 

(11) 

I 

Yo = L PAO 
A- I 

This constitutes for given Yo, Yl" .. , Yk-l a system of k linear equations 
in the f11. +,u2 + ... + ,uI = k quantities PAO' PAl" .• , PA.I'r l (Ä. = 1, 2, . .. , l). 

For Yo = Yl = ... = Yk-l = 0 the differential equation (7) has only the 
solution 1J(z) = 0; hence in this case the (homogeneous) system (11) has 
only the trivial solution 

(Ä. = 1, 2, ... , l). 

lt follows, that the determinant of the system (11) 

1 0 1 0 1 0 

el 1 e2 1 ec 1 Ti Ti Ti 

-k-l -k-2 -k-l - k- 2 -k-l -k - 2 

I 
el el e2 e2 el ec 

(k-l)! (k-2)! (k-l)! (k-2)! (k-l)! (k-2)! 
... 
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does not vanish. Moreover all elements of this determinant are algebraic 
numbers. In the special case, that Yo, Yl' ... , Yk-l are equally algebraic, 
the solution PAO' P;'l' ... , P;'./-lr 1 of (11) necessarily must consist of alge­
braic numbers. Taking for Yo, Yl> ... , Yk-l the algebraic coefficients 
co' cl> ... , Ck - 1 of y(z) we obtain as the solution exactly the coefficients of 
the polynomials Pl(z), P 2(z), . .. , Pl(z) from (8). Hence: In 

(8) 

ël> e2' ... , el are different algebraic number8 and the polynomial8 

Pl(z), P 2(z), . .. , Pl(z) 

have algebraic coefficients. 

4. We ob serve that the righthand-sides of (3) and (8) are identical 
functions of z. Using the elementary theorem b) we may suppose, without 
loss of generality, 

(12) (i=I,2, ... ,j) 

and 

P,,(z)=O(a=j+ l,j+2, ... ,8), p;.(z) =0 (Ä.=j+ l,j+2, ... ,l) 

for a positive integer j < Min (8, l). Hence 

i 
y(z) = L Pi (z) eQiz. 

i - I 

By definition el' e2' . .. , ei represent zeros of multiplicities VI' V2, . .. , Vi of 
the characteristic function 8 0 + 8 1 t + 8 2 t2 + ... in the circle It I < q. 
Moreover every Pi(z) is a polynomial of degree Vi - 1 at most (see section 
1 of this proof). On the other hand by (12) and section 3 the numbers 
el' e2,· .. , ei and the coefficients of Pl(z), P2(z), . .. , Pi(z) are all algebraic. 

This completes the proof of our lemma. 

Proof of theorem I. Without loss of generality we may assume 
y(z) 01= O. Obviously the function y(z) considered here fulfills all conditions 
of the preceding lemma. Hence 

i 
(13) y(z) = L Pi (z) eQiz , 

;=1 

where el' e2' . .. , ei denote different algebraic zeros of the characteristic 
function in the circle It I < q; moreover every Pi(z) represents a poly­
nomial with algebraic coefficients of degree Vi - 1 at most, Vi denoting 
the multiplicity of the zero ei. 

Let l; =1= 0 be an exceptional point of multiplicity f-l; hence 

l;, y(l;), y'(l;), . .. , y(/-l-ll(l;) 
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are algebraic simultaneously. From (13) it follows 

i 
-y(C) eO + L Pi(C) eQi' =0 

i~l 

i 
-y'(C) eO + L (P;(C) + ei P;(C» eQi' =0 

i~l 

(14) . . . . 

_y(l'-l)(C) eO + it (Pt-l)(C) + (Il~ 1) ei Pt- 2)(C) + ... + 

+ (~-=-~) e,:-l Pi(C») eQiC = 0. 

Now we are in a position to apply the LINDEl\iANN-'VEIERSTRASS theorem 
on each ofthe f-l equations of (14). For in these equations the "exponents" 
elC, e2C, . .. , eiC are different algebraic numbers and the "coefficients" 

-y(C), Pi(C) ; -y'(C), (P;(C) + ei Pi(C» ; ... ; 

_y(l'-l)(C), (PYI-l)(C) + (1l~1) gi P\,,-2)(C) + ... + (~=~) e~-l Pi (C») 

all are algebraic. 
For the application of the said theorem it is convenient to consider two 

special cases separately: 
Case I. Let all numbers el' e2" .. , ej be different trom zero. Then it 

follows from (14) 

y(C) = 0, P;(C) = ° 
y'(C) = 0, P;(C) + ei Pi(C) = ° 

for i = 1, 2, ... , j, hence 

(15a) 

and 

y(C) = y'(C) = ... = !/,,-I)(C) = ° 
( 15b) (i= 1,2, ... ,j). 

Case II. Let one ot the numbers el' e2" .. , ei vanish; say el = 0. 
Then we obtain from (14) in the same manner 

-y(C) + PI (C) = 0, Pi (C) = ° 
-y'(C) + P~(C) = 0, P;(C) + ei Pj(C) = ° 
_y(l'-l)(C) + P~'-I)(C) = 0, P\I'-ll(i:) + (Il"î" 1) ei pY'-2)(C) + ... + 

+ (~=~) (!'i-I Pi(C) = ° 
105 
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for i= 2,3, ... , j, hence 

(16) (i= 2, 3, ... , j). 

. By hypothesis v is the largest multiplicity of the zeros of the charac­
teristic function in the region 0 < It I < q; hence in case I every poly­
nomial Pi(z) is at most of degree Vi - 1 < v-I for i = 1,2, ... , j and 
in case 11 the same assertion holds for i = 2,3, ... , j. 

N ow we prove the two assertions of our theorem: 
1. Suppose there exist exceptional points Cl> C2, ••• ,Ck different from 

zero and with multiplicities ftl' ft2' • .• ,ftk' such that 

ftl + ft2 + ... + ftk > v. 

We have to show, that y(z) is a polynomial with algebraic coefficients. 
In case I every polynomial Pi(z) is at most of degree v-I (i = 1,2, ... ,j); 

on the other hand applying (15b) with C = C" and ft = ft" (" = 1,2, ... , k) 
we see, that every polynomial Pi(z) at least has v zeros, hence Pi(z) = 0 
and therefore y(z) = 0, but this gives a contradiction, for we assumed 
y(z) "i= o. 

In case 11 we similarly apply (16) in stead of (15b) and we obtain 
Pi(z) = 0 for i = 2, 3, ... , j, hence y(z) = P1(z), a polynomial with alge­
braic coefficients. 

2. If ao =F- 0, then t = 0 is not a zero of the characteristic function 
ao + ~ t + a2 t2 + ... , hence !h, e2' . .• , ei all are different from zero and 
we have case I. If C =F- 0 is an exceptional point with multiplicity ft, then 
we derive from (15a), that C necessarily is a zero of y(z) with multiplicity J-l 
(for y(I')(C) is transcendental and therefore different from zero). 

§ 2. In 1939 McMILLAN stated the following theorem, closely related 
to our theorem: 

"Given the set of algebraic numbers an (n = 0, 1, 2, ... ) of which an 
infinite number are non-vanishing, and such that 

lim sup I an 1
11n < e· 

n_oo 

Let there be a set of constants Cn (n = 0, 1, 2, ... ), at least two of which 
are non-vanishing, such that the function 

00 

g(t) = L Cn tn 

n-O 

is analytic for It I < R where R > e, and has zeros for It I < e only at the 
points t = Ck (k = 1, 2, ... , N) respectively of multiplicities Vk' where the 
Cic are algebraic numbers. If now 
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for all p = 0, 1,2, . .. , then the function 

F(z) = ~ :t
n ~n 

n~O n. 

takes on a transcendental value for every algebraic z *- 0." 
However this assertion certainly is not true, as is easily seen from the 

following example: Take 

Then it follows 

g(t) = 1-2 t + t2, N = 1, Cl = 1, coap + Cl ,71,+1 + c2 ap +2= 0 (p= 0,1,2, ... ), 

so that all hypotheses of McMILLAN'S theorem are satisfied. But now 

00 zn 
F(z) = 2: (n-l) I' 

n~O n. 

hence 
F(I) = 0, 

not a transcendental number. 

§ 3. A) Our theorem I clearly is a generalization of the following 
result of ITIHARA (see the joint paper of lTIHARA and ÖISHI in the list of 
references): Let the transcendental function 

00 zh 

y(z) = 2: c" hi 
h~O . 

with algebraic coefficients Co' Cl' c2 , • •• satisfy a linear differential equation 

ao y(z) + al y'(z) + ... + an ylnl(z) = 0, 

with constant algebraic coefficients ao' al" .. , a", then y(z) is a transcen­
dental number for every algebraic value of z with exception of n values 
for z at most. 

B) We can apply theorem I to the differential equation 

y(z) - ylnl(z) = O. 

Obviously the n functions 

zP zv + n zv+2u 

y,,(z) = ;! + (v+n)! + (v+2n)! + ... (l'= 0,1, ... , n-l) 

are all integrals of this equation. Hence every function 

Z Z2 

y(z) = Co + Cl li + C2 2! + ... , 

wh ere Co' Cl' c2,. •• constitute a periodic sequence of complex numbers 
with a "length" n of the period, satisfies the equation. If moreover all 
coefficients Co' Cl' C2,. •• are algebra ic and do not vanish simultaneously, 
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then we can app1y the Remark to theorem I (the zeros of the corresponding 
characteristic function 1 - tn being simpie). It follows, that y(z) is a 
transcendenta1 number for every a1gebraic va1ue of z =I=- o. 

From this we easily obtain the following theorem of DIETRICH and 
ROSENTHAL: 

I f the coefficients Ch in 

are algebraic and form a periodie sequence from some h on, then y(z) is a 
transcendental number for every algebraic value of z =I=- 0, except in the 
trivial case toot y(z) is a polynomial. 

C) We now show the following theorem of R. RADO: 
Suppose toot the real functions fl(X), Mx), . .. , fn(x), not all identically zero, 

of the real variable x satisfy the Bystem of diDerential equations 

n 

(17) f~(x) = L c,. f .(x) (r= 1,2, ... , n) 
.-1 

in which the coefficients c,. are rational numbers satisfying 

cn Cl2 cln I 
C21 c2n =I=- O. 

Cnl • Cnn 

Then, for every rational number Xo with possibly a single exception, at least 
one of the numbers 

is irrational. 

Proof. Let a and P be different rationa1 numbers, and assume, that 
the 2n numbers 

fl(a), f2(a), . .. , fn(a); ft(P), MP),· .. , fn(P) 

are rational. Then we will obtain a contradiction. 
Without 10ss of generality we may suppose a = 0 and fl(X) t=. o. 
From (17) it follows for h = 0, 1, 2, ... 

where the coefficients c,. are rationals ; hence 

f,(O) , f~(O) , f;(O) , .. , ( 

f ,(P) , f~(P) , f;(P) , ... ~ 

all are rationa1 numbers. 

(r= 1,2, ... , n) 
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From (17) it follows on the other hand by a well-known method, that 
the n functions ft(x), 12(x), . .. , I,,(x) all are integra.Is of a linear differential 
equation with constant coefficients 

ao y(x) + al y'(x) + ... + 8 n y(n)(x) = 0, 

where ao = det. Ic,,1 "* 0 and an = (- 1)". 
Now we are in a position to apply theorem I on the integl'al function 

II(x) = MO) + I~(O) Ti + I~(O) ~ + ... , 
with rational coefficients and with an exceptional argument fJ of infinite 
order. By the second assertion of this theol'em we obtain 

hence II(x) = 0; a contradiction. 
Obviously it now is easy to extend RADO'S theorem. 
D) It is possible to apply theorem I to the solutions of certain func­

tional equations. As an example I considel' in the next theorem a certain 
class of solutions of a lineal' differential-diffel'ence equation with constant 
coefficients. 

Theorem II 3). Let the integral transcendental lunction 

(18) 

where q is an arbitrary positive number and where all coefficients co' Cl' c2, . .. 
are algebraic, satisly alinear differential-difference equation 

(19) 

where the constants Apv do not vanish simultaneously and where Wo' WI ' ••• , WB 

are different numbers. 
Then y(z) is a transcendental number lor every algebraic value ol z with 

exception ol a finite number ol values lor z. 

" 11 moreover L AOv "* 0, then these exceptional points, which differ Irom 0, 
v~O 

necessarily are zeros ol y(z). 

Proof. We have fol' ft= 0, 1, ... , mand '11= 0, 1, ... , n 

y(/l)(z + w v) = y(/l)(z) + ~; y(/l+l)(z) + a;'!2 y(/l+2)(Z) + .... 
Substitution in (19) gives a linear diffel'ential equation of infinite order 

a o y(z) + ~ y'(z) + a2 y"(z) + ... = 0, 

3) This theorem was communicated without proof on September 1, 1950, at 
the International Congress of Mathematicians, Cambridge (Maas.). 
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with characteristic function 

Clearly 

Now y(z) fulfills all conditions oftheorem land the assertions oftheorem 11 
are immediate consequences of those of theorem I. 
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